7,569 research outputs found
Resistance and Resistance Fluctuations in Random Resistor Networks Under Biased Percolation
We consider a two-dimensional random resistor network (RRN) in the presence
of two competing biased percolations consisting of the breaking and recovering
of elementary resistors. These two processes are driven by the joint effects of
an electrical bias and of the heat exchange with a thermal bath. The electrical
bias is set up by applying a constant voltage or, alternatively, a constant
current. Monte Carlo simulations are performed to analyze the network evolution
in the full range of bias values. Depending on the bias strength, electrical
failure or steady state are achieved. Here we investigate the steady-state of
the RRN focusing on the properties of the non-Ohmic regime. In constant voltage
conditions, a scaling relation is found between and , where
is the average network resistance, the linear regime resistance
and the threshold value for the onset of nonlinearity. A similar relation
is found in constant current conditions. The relative variance of resistance
fluctuations also exhibits a strong nonlinearity whose properties are
investigated. The power spectral density of resistance fluctuations presents a
Lorentzian spectrum and the amplitude of fluctuations shows a significant
non-Gaussian behavior in the pre-breakdown region. These results compare well
with electrical breakdown measurements in thin films of composites and of other
conducting materials.Comment: 15 figures, 23 page
Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold
We study the multifractal properties of the current distribution of the
three-dimensional random resistor network at the percolation threshold. For
lattices ranging in size from to we measure the second, fourth and
sixth moments of the current distribution, finding {\it e.g.\/} that
where is the conductivity exponent and is the
correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil
Optical conductivity of CuO_2 infinite-layer films
The infrared conductivity of CaCuO_2, SrCuO_{2-y}, and
Sr_{0.85}Nd_{0.15}CuO_2 infinite-layer films is obtained from reflectivity
measurements by taking into account the substrate contribution. SrCuO_{2-y} and
Sr_{0.85}Nd_{0.15}CuO_2 exhibit extra-phonon modes and structured bands in the
midinfrared, not found in stoichiometric CaCuO_2. These features mirror those
observed in the perovskitic cuprates, thus showing that the polaronic
properties of high-T_c superconductors are intrinsic to the CuO_2 planes.Comment: File latex, 5 p. incl. 4 fig. in epsf. Submitted to Solid State Com
The over-representation of binary DNA tracts in seven sequenced chromosomes
BACKGROUND: DNA tracts composed of only two bases are possible in six combinations: A+G (purines, R), C+T (pyrimidines, Y), G+T (Keto, K), A+C (Imino, M), A+T (Weak, W) and G+C (Strong, S). It is long known that all-pyrimidine tracts, complemented by all-purines tracts ("R.Y tracts"), are excessively present in analyzed DNA. We have previously shown that R.Y tracts are in vast excess in yeast promoters, and brought evidence for their role in gene regulation. Here we report the systematic mapping of all six binary combinations on the level of complete sequenced chromosomes, as well as in their different subregions. RESULTS: DNA tracts composed of the above binary base combinations have been mapped in seven sequenced chromosomes: Human chromosomes 21 and 22 (the major contigs); Drosophila melanogaster chr. 2R; Caenorhabditis elegans chr. I; Arabidopsis thaliana chr. II; Saccharomyces cerevisiae chr. IV and M. jannaschii. A huge over-representation, reaching million-folds, has been found for very long tracts of all binary motifs except S, in each of the seven organisms. Long R.Y tracts are the most excessive, except in D. melanogaster, where the K.M motif predominates. S (G, C rich) tracts are in excess mainly in CpG islands; the W motif predominates in bacteria. Many excessively long W tracts are nevertheless found also in the archeon and in the eukaryotes. The survey of complete chromosomes enables us, for the first time, to map systematically the intergenic regions. In human and other chromosomes we find the highest over-representation of the binary DNA tracts in the intergenic regions. These over-representations are only partly explainable by the presence of interspersed elements. CONCLUSIONS: The over-representation of long DNA tracts composed of five of the above motifs is the largest deviation from randomness so far established for DNA, and this in a wide range of eukaryotic and archeal chromosomes. A propensity for ready DNA unwinding is proposed as the functional role, explaining the evolutionary conservation of the huge excesses observed
Small and large polarons in nickelates, manganites, and cuprates
By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO),
Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and
Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of
polarons in this cuprate family. While in LSNO and SLMO small polarons localize
into ordered structures below a transition temperature, in those cuprates the
polarons appear to be large, and at low T their binding energy decreases. This
reflects into an increase of the polaron radius, which may trigger coherent
transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of
Superconductivity - Proc. "Stripes 1996" - Roma Dec 199
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Infrared response of ordered polarons in layered perovskites
We report on the infrared absorption spectra of three oxides where charged
superlattices have been recently observed in diffraction experiments. In
LaSrNiO, polaron localization is found to suppress the
low-energy conductivity through the opening of a gap and to split the
- vibrational manifold of the oxygen octahedra. Similar effects
are detected in SrLaMnO and in LaNiO, with
peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid
Commun.), 1 Oct. 1996. The figures will be faxed upon request.
E-mail:[email protected] Fax: +39-6-446315
Optical conductivity of the nonsuperconducting cuprate La(8-x)Sr(x)Cu(8)O(20)
La(8-x)Sr(x)Cu(8)O(20) is a non-superconducting cuprate, which exhibits a
doubling of the elementary cell along the c axis. Its optical conductivity
sigma (omega) has been first measured here, down to 20 K, in two single
crystals with x = 1.56 and x = 2.24. Along c, sigma (omega) shows, in both
samples, bands due to strongly bound charges, thus confirming that the cell
doubling is due to charge ordering. In the ab plane, in addition to the Drude
term one observes an infrared peak at 0.1 eV and a midinfrared band at 0.7 eV.
The 0.1 eV peak hardens considerably below 200 K, in correspondence of an
anomalous increase in the sample dc resistivity, in agreement with its
polaronic origin. This study allows one to establish relevant similarities and
differences with respect to the spectrum of the ab plane of the superconducting
cuprates.Comment: Revised version submitted to Phys. Rev. B, including the elimination
of Fig. 1 and changes to Figs. 4 and
Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes
we identify the intrinsic bulk pairing symmetry for both electron and
hole-doped cuprates from the existing bulk- and nearly bulk-sensitive
experimental results such as magnetic penetration depth, Raman scattering,
single-particle tunneling, Andreev reflection, nonlinear Meissner effect,
neutron scattering, thermal conductivity, specific heat, and angle-resolved
photoemission spectroscopy. These experiments consistently show that the
dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave
with eight line nodes, and of anisotropic s-wave in electron-doped cuprates.
The proposed pairing symmetries do not contradict some surface- and
phase-sensitive experiments which show a predominant d-wave pairing symmetry at
the degraded surfaces. We also quantitatively explain the phase-sensitive
experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and
YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure
Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab
We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using
a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with
the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass
distribution is obtained that is consistent with W decay and inconsistent with
the background prediction by 3.3 standard deviations. From this peak we measure
the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the
presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet
channel.Comment: 20 pages, 4 figures, submitted to PR
- …