1 research outputs found
Asymptotic entanglement in 1D quantum walks with a time-dependent coined
Discrete-time quantum walk evolve by a unitary operator which involves two
operators a conditional shift in position space and a coin operator. This
operator entangles the coin and position degrees of freedom of the walker. In
this paper, we investigate the asymptotic behavior of the coin position
entanglement (CPE) for an inhomogeneous quantum walk which determined by two
orthogonal matrices in one-dimensional lattice. Free parameters of coin
operator together provide many conditions under which a measurement perform on
the coin state yield the value of entanglement on the resulting position
quantum state. We study the problem analytically for all values that two free
parameters of coin operator can take and the conditions under which
entanglement becomes maximal are sought.Comment: 23 pages, 4 figures, accepted for publication in IJMPB. arXiv admin
note: text overlap with arXiv:1001.5326 by other author