25,149 research outputs found

    Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation

    Full text link
    In order to increase the accelerating gradient of Superconducting Radio Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of its high transition temperature and potential for low surface resistance in the high RF field regime. However, due to the presence of the small superconducting gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite large compared to a single gap s-wave superconductor (SC) such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB2, as well as extrinsic sources, is an urgent requirement. A localized and strong RF magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that at least two mechanisms are responsible for this nonlinear response, one of which involves vortex nucleation and penetration into the film. [1] T. M. Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field Microwave Microscope for RF Defect Localization in Superconductors", IEEE Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure

    In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures

    Get PDF
    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement

    Equation of state of a superfluid Fermi gas in the BCS-BEC crossover

    Full text link
    We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.Comment: 7 pages, 4 figures, published version in Europhysics Letters, a long preprint with details will appear soo

    Ferroelectric and magnetic properties of Pb(Fe2/3W1/3)O3-based multiferroic compounds with cation order

    Get PDF
    BiFeO3 and PbTiO3 were introduced to a Sc-modified Pb(Fe2/3W1/3)O3 compound with strong cation order to improve the multiferroic properties. It is found that the degree of cation order decreases as the amount of BiFeO3 or PbTiO3 increases. As a result, the saturation magnetization deteriorates. Solid solutions with BiFeO3 show an increase in both ferroelectric and magnetic transition temperatures. However, the ferroelectric remanent polarization is dramatically suppressed. In contrast, solid solution with PbTiO3 leads to an increase in the ferroelectric transition temperature, a decrease in the magnetic transition temperature, and a significant enhancement of remanent polarization. The composition 0.93[0.79Pb(Fe2/3W1/3)O3–0.21Pb(Sc2/3W1/3)O3]–0.07PbTiO3 shows the optimized properties of Tmax of 208K, Pr of 3.6μC/cm2 between 120 and 210K, TN of 209K, and Ms of 0.23μB/f.u. (3.7emu/g) at 10K under 5T

    Carrier and polarization dynamics in monolayer MoS2

    Full text link
    In monolayer MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical valley initialization. In time resolved photoluminescence (PL) experiments we find that both the polarization and emission dynamics do not change from 4K to 300K within our time resolution. We measure a high polarization and show that under pulsed excitation the emission polarization significantly decreases with increasing laser power. We find a fast exciton emission decay time on the order of 4ps. The absence of a clear PL polarization decay within our time resolution suggests that the initially injected polarization dominates the steady state PL polarization. The observed decrease of the initial polarization with increasing pump photon energy hints at a possible ultrafast intervalley relaxation beyond the experimental ps time resolution. By compensating the temperature induced change in bandgap energy with the excitation laser energy an emission polarization of 40% is recovered at 300K, close to the maximum emission polarization for this sample at 4K.Comment: 7 pages, 7 figures including supplementary materia

    Enhancing Big Data Security with Collaborative Intrusion Detection

    Full text link
    As an asset of Cloud computing, big data is now changing our business models and applications. Rich information residing in big data is driving business decision making to be a data-driven process. Its security and privacy, however, have always been a concern of the owners of the data. The security and privacy could be strengthened via securing Cloud computing environments. This requires a comprehensive security solution from attack prevention to attack detection. Intrusion Detection Systems (IDSs) are playing an increasingly important role within the realm of a set of network security schemes. In this article, we study the vulnerabilities in Cloud computing and propose a collaborative IDS framework to enhance the security and privacy of big data
    • …
    corecore