95 research outputs found
Reply to "Comment on 'Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate'"
In the Comment by M. Mackie \textit{et al.} [arXiv: physics/0212111 v.4], the
authors suggest that the molecular conversion efficiency in atom-molecule
STIRAP can be improved by lowering the initial atomic density, which in turn
requires longer pulse durations to maintain adiabaticity. Apart from the fact
that the mean-field approximation becomes questionable at low densities, we
point out that a low-density strategy with longer pulses has several problems.
It generally requires higher pulse energies, and increases radiative losses. We
also show that even within the approximations used in the Comment, their
example leads to no efficiency improvement compared to our high-density case.
In a more careful analysis including radiative losses neglected in the Comment,
the proposed strategy gives almost no conversion owing to the longer pulse
durations required.Comment: Accepted for publication in Phys. Rev.
Quantum computations with atoms in optical lattices: marker qubits and molecular interactions
We develop a scheme for quantum computation with neutral atoms, based on the
concept of "marker" atoms, i.e., auxiliary atoms that can be efficiently
transported in state-independent periodic external traps to operate quantum
gates between physically distant qubits. This allows for relaxing a number of
experimental constraints for quantum computation with neutral atoms in
microscopic potential, including single-atom laser addressability. We discuss
the advantages of this approach in a concrete physical scenario involving
molecular interactions.Comment: 15 pages, 14 figure
Quantum Dynamics of Atom-molecule BECs in a Double-Well Potential
We investigate the dynamics of two-component Bose-Josephson junction composed
of atom-molecule BECs. Within the semiclassical approximation, the multi-degree
of freedom of this system permits chaotic dynamics, which does not occur in
single-component Bose-Josephson junctions. By investigating the level
statistics of the energy spectra using the exact diagonalization method, we
evaluate whether the dynamics of the system is periodic or non-periodic within
the semiclassical approximation. Additionally, we compare the semiclassical and
full-quantum dynamics.Comment: to appear in JLTP - QFS 200
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
We consider the transfer of a two-species Bose-Einstein condensate into an
optical lattice with a density such that that a Mott-insulator state with one
atom per species per lattice site is obtained in the deep lattice regime.
Depending on collision parameters the result could be either a `mixed' or a
`separated' Mott-insulator phase. Such a `mixed' two-species insulator could
then be photo-associated into an array of dipolar molecules suitable for
quantum computation or the formation of a dipolar molecular condensate. For the
case of a Rb-K two-species BEC, however, the large inter-species
scattering length makes obtaining the desired `mixed' Mott insulator phase
difficult. To overcome this difficulty we investigate the effect of varying the
lattice frequency on the mean-field interaction and find a favorable parameter
regime under which a lattice of dipolar molecules could be generated
Formation of Two Component Bose Condensate During the Chemical Potential Curve Crossing
In this article we study the formation of the two modes Bose-Einstein
condensate and the correlation between them. We show that beyond the mean field
approximation the dissociation of a molecular condensate due to the chemical
potential curve crossing leads to the formation of two modes condensate. We
also show that these two modes are correlated in a two mode squeezed state.Comment: 10 page
Matter-wave entanglement and teleportation by molecular dissociation and collisions
We propose dissociation of cold diatomic molecules as a source of atom pairs
with highly correlated (entangled) positions and momenta, approximating the
original quantum state introduced by Einstein, Podolsky and Rosen (EPR) [Phys.
Rev. 47, 777 (1935)]. Wavepacket teleportation is shown to be achievable by its
collision with one of the EPR correlated atoms and manipulation of the other
atom in the pair.Comment: REVTeX, 4 pages, 3 figures. Text reformulated, modified figs. 1 and
2. Accepted by Phys. Rev. Let
A continuous source of translationally cold dipolar molecules
The Stark interaction of polar molecules with an inhomogeneous electric field
is exploited to select slow molecules from a room-temperature reservoir and
guide them into an ultrahigh vacuum chamber. A linear electrostatic quadrupole
with a curved section selects molecules with small transverse and longitudinal
velocities. The source is tested with formaldehyde (H2CO) and deuterated
ammonia (ND3). With H2CO a continuous flux is measured of approximately 10^9/s
and a longitudinal temperature of a few K. The data are compared with the
result of a Monte Carlo simulation.Comment: 4 pages, 4 figures v2: small changes in the abstract, text and
references. Figures 1 & 2 regenerated to prevent errors in the pd
Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions
The dynamical behavior of Bose-Einstein condensation (BEC) in a gas with
attractive interactions is striking. Quantum theory predicts that BEC of a
spatially homogeneous gas with attractive interactions is precluded by a
conventional phase transition into either a liquid or solid. When confined to a
trap, however, such a condensate can form provided that its occupation number
does not exceed a limiting value. The stability limit is determined by a
balance between self-attraction and a repulsion arising from position-momentum
uncertainty under conditions of spatial confinement. Near the stability limit,
self-attraction can overwhelm the repulsion, causing the condensate to
collapse. Growth of the condensate, therefore, is punctuated by intermittent
collapses, which are triggered either by macroscopic quantum tunneling or
thermal fluctuation. Previous observation of growth and collapse has been
hampered by the stochastic nature of these mechanisms. Here we reduce the
stochasticity by controlling the initial number of condensate atoms using a
two-photon transition to a diatomic molecular state. This enables us to obtain
the first direct observation of the growth of a condensate with attractive
interactions and its subsequent collapse.Comment: 10 PDF pages, 5 figures (2 color), 19 references, to appear in Nature
Dec. 7 200
Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate
We study the system of coupled atomic and molecular condensates within the
two-mode model and beyond mean-field theory (MFT). Large amplitude
atom-molecule coherent oscillations are shown to be damped by the rapid growth
of fluctuations near the dynamically unstable molecular mode. This result
contradicts earlier predictions about the recovery of atom-molecule
oscillations in the two-mode limit. The frequency of the damped oscillation is
also shown to scale as with the total number of atoms ,
rather than the expected pure scaling. Using a linearized model, we
obtain analytical expressions for the initial depletion of the molecular
condensate in the vicinity of the instability, and show that the important
effect neglected by mean field theory is an initially non-exponential
`spontaneous' dissociation into the atomic vacuum. Starting with a small
population in the atomic mode, the initial dissociation rate is sensitive to
the exact atomic amplitudes, with the fastest (super-exponential) rate observed
for the entangled state, formed by spontaneous dissociation.Comment: LaTeX, 5 pages, 3 PostScript figures, uses REVTeX and epsfig,
submitted to Physical Review A, Rapid Communication
Formation of Pairing Fields in Resonantly Coupled Atomic and Molecular Bose-Einstein Condensates
In this paper, we show that pair-correlations may play an important role in
the quantum statistical properties of a Bose-Einstein condensed gas composed of
an atomic field resonantly coupled with a corresponding field of molecular
dimers. Specifically, pair-correlations in this system can dramatically modify
the coherent and incoherent transfer between the atomic and molecular fields.Comment: 4 pages, 4 figure
- …
