4,579 research outputs found

    Quick-disconnect coupling safe transfer of hazardous fluids

    Get PDF
    Quick-disconnect coupling is used for uncoupling of plumbing during ground-to-vehicle transfer of cryogenic and hazardous fluids. The coupling allows remote positive control of liquid pressure and flow during the transfer operation, remote connection and separation capabilities, and negligible liquid spillage upon disconnection

    Accurate, rapid, temperature and liquid-level sensor for cryogenic tanks

    Get PDF
    Thermopiles measure ullage gas temperatures to within plus or minus 1.65 deg K between 20 and 300 deg K, and also serve as point liquid-level sensors. Thermopile technique measures smaller temperature differences by keeping the reference junctions inside the tank and near the temperature range of the measuring junction

    Classical Supersymmetric Mechanics

    Get PDF
    We analyse a supersymmetric mechanical model derived from (1+1)-dimensional field theory with Yukawa interaction, assuming that all physical variables take their values in a Grassmann algebra B. Utilizing the symmetries of the model we demonstrate how for a certain class of potentials the equations of motion can be solved completely for any B. In a second approach we suppose that the Grassmann algebra is finitely generated, decompose the dynamical variables into real components and devise a layer-by-layer strategy to solve the equations of motion for arbitrary potential. We examine the possible types of motion for both bosonic and fermionic quantities and show how symmetries relate the former to the latter in a geometrical way. In particular, we investigate oscillatory motion, applying results of Floquet theory, in order to elucidate the role that energy variations of the lower order quantities play in determining the quantities of higher order in B.Comment: 29 pages, 2 figures, submitted to Annals of Physic

    Exotic Statistics for Ordinary Particles in Quantum Gravity

    Full text link
    Objects exhibiting statistics other than the familiar Bose and Fermi ones are natural in theories with topologically nontrivial objects including geons, strings, and black holes. It is argued here from several viewpoints that the statistics of ordinary particles with which we are already familiar are likely to be modified due to quantum gravity effects. In particular, such modifications are argued to be present in loop quantum gravity and in any theory which represents spacetime in a fundamentally piecewise-linear fashion. The appearance of unusual statistics may be a generic feature (such as the deformed position-momentum uncertainty relations and the appearance of a fundamental length scale) which are to be expected in any theory of quantum gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation Essay Competitio

    Mathematical Tools for Calculation of the Effective Action in Quantum Gravity

    Full text link
    We review the status of covariant methods in quantum field theory and quantum gravity, in particular, some recent progress in the calculation of the effective action via the heat kernel method. We study the heat kernel associated with an elliptic second-order partial differential operator of Laplace type acting on smooth sections of a vector bundle over a Riemannian manifold without boundary. We develop a manifestly covariant method for computation of the heat kernel asymptotic expansion as well as new algebraic methods for calculation of the heat kernel for covariantly constant background, in particular, on homogeneous bundles over symmetric spaces, which enables one to compute the low-energy non-perturbative effective action.Comment: 71 pages, 2 figures, submitted for publication in the Springer book (in preparation) "Quantum Gravity", edited by B. Booss-Bavnbek, G. Esposito and M. Lesc

    A Phase Transistion in the Water Coupled to a Local External Perturbation

    Get PDF
    A flux of ideal fluid coupled to perturbation is investigated by nonperturbative methods of the quantum field theory. Asymptotic behavior of the flux coupled to perturbation turns out to be similiar to that of superfluids.Comment: 17 pages, 5 figures, Late

    An accurate equation of state for the one component plasma in the low coupling regime

    Full text link
    An accurate equation of state of the one component plasma is obtained in the low coupling regime 0≤Γ≤10 \leq \Gamma \leq 1. The accuracy results from a smooth combination of the well-known hypernetted chain integral equation, Monte Carlo simulations and asymptotic analytical expressions of the excess internal energy uu. In particular, special attention has been brought to describe and take advantage of finite size effects on Monte Carlo results to get the thermodynamic limit of uu. This combined approach reproduces very accurately the different plasma correlation regimes encountered in this range of values of Γ\Gamma. This paper extends to low Γ\Gamma's an earlier Monte Carlo simulation study devoted to strongly coupled systems for 1≤Γ≤1901 \leq \Gamma \leq 190 ({J.-M. Caillol}, {J. Chem. Phys.} \textbf{111}, 6538 (1999)). Analytical fits of u(Γ)u(\Gamma) in the range 0≤Γ≤10 \leq \Gamma \leq 1 are provided with a precision that we claim to be not smaller than p=10−5p= 10^{-5}. HNC equation and exact asymptotic expressions are shown to give reliable results for u(Γ)u(\Gamma) only in narrow Γ\Gamma intervals, i.e. 0≤Γ≲0.50 \leq \Gamma \lesssim 0.5 and 0≤Γ≲0.30 \leq \Gamma \lesssim 0.3 respectively

    The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity

    Full text link
    We investigate whether or not an Einstein Static universe is a solution to the cosmological equations in f(R)f(R) gravity. It is found that only one class of f(R)f(R) theories admits an Einstein Static model, and that this class is neutrally stable with respect to vector and tensor perturbations for all equations of state on all scales. Scalar perturbations are only stable on all scales if the matter fluid equation of state satisfies cs2>5−16≈0.21c_s^2>\frac{\sqrt{5}-1}{6}\approx 0.21. This result is remarkably similar to the GR case, where it was found that the Einstein Static model is stable for cs2>1/5c_s^2>{1/5}.Comment: Minor changes, To appear in PR

    Semiclassical thermodynamics of scalar fields

    Get PDF
    We present a systematic semiclassical procedure to compute the partition function for scalar field theories at finite temperature. The central objects in our scheme are the solutions of the classical equations of motion in imaginary time, with spatially independent boundary conditions. Field fluctuations -- both field deviations around these classical solutions, and fluctuations of the boundary value of the fields -- are resummed in a Gaussian approximation. In our final expression for the partition function, this resummation is reduced to solving certain ordinary differential equations. Moreover, we show that it is renormalizable with the usual 1-loop counterterms.Comment: 24 pages, 5 postscript figure
    • …
    corecore