294 research outputs found

    Algebraic damping in the one-dimensional Vlasov equation

    Get PDF
    We investigate the asymptotic behavior of a perturbation around a spatially non homogeneous stable stationary state of a one-dimensional Vlasov equation. Under general hypotheses, after transient exponential Landau damping, a perturbation evolving according to the linearized Vlasov equation decays algebraically with the exponent -2 and a well defined frequency. The theoretical results are successfully tested against numerical NN-body simulations, corresponding to the full Vlasov dynamics in the large NN limit, in the case of the Hamiltonian mean-field model. For this purpose, we use a weighted particles code, which allows us to reduce finite size fluctuations and to observe the asymptotic decay in the NN-body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos correcte

    Psi-Series Solution of Fractional Ginzburg-Landau Equation

    Full text link
    One-dimensional Ginzburg-Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order alphaalpha with polynomial nonlinearity of order ss have the noninteger power-like behavior of order α/(1s)\alpha/(1-s) near the singularity.Comment: LaTeX, 19 pages, 2 figure

    Patient-reported outcome measures for cancer caregivers: a systematic review

    Get PDF
    Purpose Informal caregivers provide invaluable help and support to people with cancer. As treatments extend survival and the potential burdens on carers increase, there is a need to assess the impact of the role. This systematic review identified instruments that measure the impact of caregiving, evaluated their psychometric performance specifically in cancer and appraised the content. Methods A 2-stage search strategy was employed to: 1. identify instruments that measure the impact of caregiving, 2. run individual searches on each measure to identify publications evaluating psychometric performance in the target population. Searches were conducted in Medline, Embase, CINAHL and Psychinfo and restricted to English for instrument used and article language. Psychometric performance was evaluated for content and construct validity, internal consistency, test-retest reliability, precision, responsiveness and acceptability. Individual scale items were extracted and systematically categorised into conceptual domains. Results 10 papers were included reporting on the psychometric properties of 8 measures. Although construct validity and internal consistency were most frequently evaluated, no study comprehensively evaluated all relevant properties. Few studies met our inclusion criteria so it was not possible to consider the psychometric performance of the measures across a group of studies. Content analysis resulted in 16 domains with 5 overarching themes: lifestyle disruption; wellbeing; health of the caregiver; managing the situation and relationships. Conclusions Few measures of caregiver impact have been subject to psychometric evaluation in cancer caregivers. Those that have do not capture well changes in roles and responsibilities within the family and career, indicating the need for a new instrument

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level

    A Racial/Ethnic Performance Disparity on the Facial Recognition Test

    Get PDF
    The Facial Recognition Test is a widely used psychometric instrument for assessing visuoperceptual functioning. Only two prior studies have examined the effects of race/ethnicity on this test. Given that the United States has become more culturally diverse since the creation of the test, it is important to re-visit the effects of this demographic variable on performance. Participants were 75 males and 75 females between the ages of 18 and 43 years (M = 21.91, SD = 5.33). Racial/ethnic categories utilized by the U.S. Census Bureau were equally represented. No gender differences were observed. The race/ethnicity main effect was significant. The gender x race/ethnicity interaction was not significant. The data revealed a clear racial/ethnic performance disparity on the Facial Recognition Test

    Mathematical practice, crowdsourcing, and social machines

    Full text link
    The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. Mathematical practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question answering system {\it mathoverflow} contains around 40,000 mathematical conversations, and {\it polymath} collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of "soft" aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a "social machine", a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent Computer Mathematics, CICM 2013, July 2013 Bath, U

    Toward a first-principles integrated simulation of tokamak edge plasmas

    Get PDF
    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles

    Responsibility Analysis by Abstract Interpretation

    Full text link
    Given a behavior of interest in the program, statically determining the corresponding responsible entity is a task of critical importance, especially in program security. Classical static analysis techniques (e.g. dependency analysis, taint analysis, slicing, etc.) assist programmers in narrowing down the scope of responsibility, but none of them can explicitly identify the responsible entity. Meanwhile, the causality analysis is generally not pertinent for analyzing programs, and the structural equations model (SEM) of actual causality misses some information inherent in programs, making its analysis on programs imprecise. In this paper, a novel definition of responsibility based on the abstraction of event trace semantics is proposed, which can be applied in program security and other scientific fields. Briefly speaking, an entity ER is responsible for behavior B, if and only if ER is free to choose its input value, and such a choice is the first one that ensures the occurrence of B in the forthcoming execution. Compared to current analysis methods, the responsibility analysis is more precise. In addition, our definition of responsibility takes into account the cognizance of the observer, which, to the best of our knowledge, is a new innovative idea in program analysis.Comment: This is the extended version (33 pages) of a paper to be appeared in the Static Analysis Symposium (SAS) 201
    corecore