271 research outputs found

    Principal Component Analysis of the Time- and Position-Dependent Point Spread Function of the Advanced Camera for Surveys

    Full text link
    We describe the time- and position-dependent point spread function (PSF) variation of the Wide Field Channel (WFC) of the Advanced Camera for Surveys (ACS) with the principal component analysis (PCA) technique. The time-dependent change is caused by the temporal variation of the HSTHST focus whereas the position-dependent PSF variation in ACS/WFC at a given focus is mainly the result of changes in aberrations and charge diffusion across the detector, which appear as position-dependent changes in elongation of the astigmatic core and blurring of the PSF, respectively. Using >400 archival images of star cluster fields, we construct a ACS PSF library covering diverse environments of the HSTHST observations (e.g., focus values). We find that interpolation of a small number (∌20\sim20) of principal components or ``eigen-PSFs'' per exposure can robustly reproduce the observed variation of the ellipticity and size of the PSF. Our primary interest in this investigation is the application of this PSF library to precision weak-lensing analyses, where accurate knowledge of the instrument's PSF is crucial. However, the high-fidelity of the model judged from the nice agreement with observed PSFs suggests that the model is potentially also useful in other applications such as crowded field stellar photometry, galaxy profile fitting, AGN studies, etc., which similarly demand a fair knowledge of the PSFs at objects' locations. Our PSF models, applicable to any WFC image rectified with the Lanczos3 kernel, are publicly available.Comment: Accepted to PASP. To appear in December issue. Figures are degraded to meet the size limit. High-resolution version can be downloaded at http://acs.pha.jhu.edu/~mkjee/acs_psf/acspsf.pd

    Past and present star formation in the SMC: NGC 346 and its neighborhood

    Get PDF
    In the quest of understanding how star formation occurs and propagates in the low metallicity environment of the Small Magellanic Cloud (SMC), we acquired deep F555W (~V), and F814W (~I) HST/ACS images of the young and massive star forming region NGC 346. These images and their photometric analysis provide us with a snapshot of the star formation history of the region. We find evidence for star formation extending from ~10 Gyr in the past until ~150 Myr in the field of the SMC. The youngest stellar population (~3 +/- 1 Myr) is associated with the NGC 346 cluster. It includes a rich component of low mass pre-main sequence stars mainly concentrated in a number of sub-clusters, spatially co- located with CO clumps previously detected by Rubio et al. (2000). Within our analysis uncertainties, these sub-clusters appear coeval with each other. The most massive stars appear concentrated in the central sub-clusters, indicating possible mass segregation. A number of embedded clusters are also observed. This finding, combined with the overall wealth of dust and gas, could imply that star formation is still active. An intermediate age star cluster, BS90, formed ~4.3 +/-0.1 Gyr ago, is also present in the region. Thus, this region of the SMC has supported star formation with varying levels of intensity over much of the cosmic time.Comment: 38 pages, 13 figures, 3 tables; AJ accepte

    Discovery of Globular Clusters in the Proto-Spiral NGC2915: Implications for Hierarchical Galaxy Evolution

    Full text link
    We have discovered three globular clusters beyond the Holmberg radius in Hubble Space Telescope Advanced Camera for Surveys images of the gas-rich dark matter dominated blue compact dwarf galaxy NGC2915. The clusters, all of which start to resolve into stars, have M_{V606} = -8.9 to -9.8 mag, significantly brighter than the peak of the luminosity function of Milky Way globular clusters. Their colors suggest a metallicity [Fe/H] ~ -1.9 dex, typical of metal-poor Galactic globular clusters. The specific frequency of clusters is at a minimum normal, compared to spiral galaxies. However, since only a small portion of the system has been surveyed it is more likely that the luminosity and mass normalized cluster content is higher, like that seen in elliptical galaxies and galaxy clusters. This suggests that NGC2915 resembles a key phase in the early hierarchical assembly of galaxies - the epoch when much of the old stellar population has formed, but little of the stellar disk. Depending on the subsequent interaction history, such systems could go on to build-up larger elliptical galaxies, evolve into normal spirals, or in rare circumstances remain suspended in their development to become systems like NGC2915.Comment: ApJ Letters accepted; 6 pages, 2 figures, 3 table

    Advanced Camera for Surveys Observations of Young Star Clusters in the Interacting Galaxy UGC 10214

    Full text link
    We present the first Advanced Camera for Surveys (ACS) observations of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as part of the Early Release Observation (ERO) program for the newly installed ACS during service mission SM3B for the Hubble Space Telescope (HST). Many young star clusters can be identified in the tails of UGC 10214, with ages ranging from ~3 Myr to 10 Myr. The extreme blue V-I (F606W-F814W) colors of the star clusters found in the tail of UGC 10214 can only be explained if strong emission lines are included with a young stellar population. This has been confirmed by our Keck spectroscopy of some of these bright blue stellar knots. The most luminous and largest of these blue knots has an absolute magnitude of M_V = -14.45, with a half-light radius of 161 pc, and if it is a single star cluster, would qualify as a super star cluster (SSC). Alternatively, it could be a superposition of multiple scaled OB associations or clusters. With an estimated age of ~ 4-5 Myr, its derived mass is < 1.3 x 10^6 solar masses. Thus the young stellar knot is unbound and will not evolve into a normal globular cluster. The bright blue clusters and associations are much younger than the dynamical age of the tail, providing strong evidence that star formation occurs in the tail long after it was ejected. UGC 10214 provides a nearby example of processes that contributed to the formation of halos and intra-cluster media in the distant and younger Universe.Comment: 6 pages with embedded figures, ApJ in pres

    Internal Color Properties of Resolved Spheroids in the Deep HST/ACS field of UGC 10214

    Full text link
    (Abridged) We study the internal color properties of a morphologically selected sample of spheroidal galaxies taken from HST/ACS ERO program of UGC 10214 (``The Tadpole''). By taking advantage of the unprecedented high resolution of the ACS in this very deep dataset we are able to characterize spheroids at sub-arcseconds scales. Using the V_606W and I_814W bands, we construct V-I color maps and extract color gradients for a sample of spheroids at I_814W < 24 mag. We investigate the existence of a population of morphologically classified spheroids which show extreme variation in their internal color properties similar to the ones reported in the HDFs. These are displayed as blue cores and inverse color gradients with respect to those accounted from metallicity variations. Following the same analysis we find a similar fraction of early-type systems (~30%-40%) that show non-homologous internal colors, suggestive of recent star formation activity. We present two statistics to quantify the internal color variation in galaxies and for tracing blue cores, from which we estimate the fraction of non-homogeneous to homogeneous internal colors as a function of redshift up to z<1.2. We find that it can be described as about constant as a function of redshift, with a small increase with redshift for the fraction of spheroids that present strong color dispersions. The implications of a constant fraction at all redshifts suggests the existence of a relatively permanent population of evolving spheroids up to z~1. We discuss the implications of this in the context of spheroidal formation.Comment: Fixed URL for high resolution version. 13 Pages, 10 Figures. Accepted for Publication in ApJ. Sep 1st issue. Higher resolution version and complete table3B at http://acs.pha.jhu.edu/~felipe/e-prints/Tadpol

    The Luminosity Function of Early-Type Galaxies at z~0.75

    Full text link
    We measure the luminosity function of morphologically selected E/S0 galaxies from z=0.5z=0.5 to z=1.0z=1.0 using deep high resolution Advanced Camera for Surveys imaging data. Our analysis covers an area of 48\Box\arcmin (8×\times the area of the HDF-N) and extends 2 magnitudes deeper (I∌24I\sim24 mag) than was possible in the Deep Groth Strip Survey (DGSS). At 0.5<z<0.750.5<z<0.75, we find MB∗−5log⁥h0.7=−21.1±0.3M_B^*-5\log h_{0.7}=-21.1\pm0.3 and α=−0.53±0.2\alpha=-0.53\pm0.2, and at 0.75<z<1.00.75<z<1.0, we find MB∗−5log⁥h0.7=−21.4±0.2M_B^*-5\log h_{0.7}=-21.4\pm0.2. These luminosity functions are similar in both shape and number density to the luminosity function using morphological selection (e.g., DGSS), but are much steeper than the luminosity functions of samples selected using morphological proxies like the color or spectral energy distribution (e.g., CFRS, CADIS, or COMBO-17). The difference is due to the `blue', (U−V)0<1.7(U-V)_0<1.7, E/S0 galaxies, which make up to ∌30\sim30% of the sample at all magnitudes and an increasing proportion of faint galaxies. We thereby demonstrate the need for {\it both morphological and structural information} to constrain the evolution of galaxies. We find that the `blue' E/S0 galaxies have the same average sizes and Sersic parameters as the `red', (U−V)0>1.7(U-V)_0>1.7, E/S0 galaxies at brighter luminosities (MB<−20.1M_B<-20.1), but are increasingly different at fainter magnitudes where `blue' galaxies are both smaller and have lower Sersic parameters. Fits of the colors to stellar population models suggest that most E/S0 galaxies have short star-formation time scales (τ<1\tau<1 Gyr), and that galaxies have formed at an increasing rate from z∌8z\sim8 until z∌2z\sim2 after which there has been a gradual decline.Comment: 39 pages, 21 figures, accepted in A

    Star Formation at z~6: i-dropouts in the ACS GTO fields

    Full text link
    Using an i-z dropout criterion, we determine the space density of z~6 galaxies from two deep ACS GTO fields with deep optical-IR imaging. A total of 23 objects are found over 46 arcmin^2, or ~0.5 objects/arcmin^2 down to z~27.3 (6 sigma; all AB mag) (including one probable z~6 AGN). Combining deep ISAAC data for our RDCS1252-2927 field (J~25.7 and Ks~25.0 (5 sigma)) and NICMOS data for the HDF North (JH~27.3 (5 sigma)), we verify that these dropouts have flat spectral slopes. i-dropouts in our sample range in luminosity from ~1.5 L* (z~25.6) to ~0.3 L* (z~27.3) with the exception of one very bright candidate at z~24.2. The half-light radii vary from 0.09" to 0.29", or 0.5 kpc to 1.7 kpc. We derive the z~6 rest-frame UV luminosity density using three different procedures, each utilizing simulations based on a CDF South V dropout sample. First, we compare our findings with a no-evolution projection of this V-dropout sample. We find 23+/-25% more i-dropouts than we predict. Adopting previous results to z~5, this works out to a 20+/-29% drop in the luminosity density from z~3 to z~6. Second, we use these same V-dropout simulations to derive a selection function for our i-dropout sample and compute the UV-luminosity density (7.2+/-2.5 x 10^25 ergs/s/Hz/Mpc^3 down to z~27). We find a 39+/-21% drop over the same redshift range. This is our preferred value and suggests a star formation rate of 0.0090+/-0.0031 M_sol/yr/Mpc^3 to z~27, or ~0.036+/- 0.012 M_sol/yr/Mpc^3 extrapolating the LF to the faint limit. Third, we follow a very similar procedure, but assume no incompleteness, finding a luminosity density which is ~2-3X lower. This final estimate constitutes a lower limit. All three estimates are within the canonical range of luminosity densities necessary for reionization of the universe at this epoch. (abridged)Comment: 36 pages, 13 figures, 2 tables, accepted for publication in ApJ, postscript version with high-resolution figures can be downloaded at http://www.ucolick.org/~bouwens/idropout.p

    The Morphology - Density Relation in z ~ 1 Clusters

    Full text link
    We measure the morphology--density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys on board the Hubble Space Telescope. Simulations and independent comparisons of ourvisually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and z = 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work -- specifically, the growth in the bulge-dominated galaxy fraction, f_E+SO, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and density <= 500 galaxies/Mpc^2, we find = 0.72 +/- 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr galaxies relative to the local galaxy population. The Elliptical fraction - density relation exhibits no significant evolution between z = 1 and z = 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.Comment: 30 pages, 18 figures. Accepted for publication in ApJ. Full resolution versions of figs 2,3,6,8 are available at http://www.stsci.edu/~postman/mdr_figure

    Feedback and Brightest Cluster Galaxy Formation: ACS Observations of the Radio Galaxy TN J1338--1942 at z=4.1

    Full text link
    We present deep optical imaging of the z=4.1 radio galaxy TN J1338--1942 obtained using the ACS on-board HST. The radio galaxy is known to reside within a large galaxy overdensity (both in physical extent and density contrast). There is good evidence that this `protocluster' region is the progenitor of a present-day rich galaxy cluster. TN J1338 is the dominant galaxy in the protocluster, in terms of size and luminosity and therefore seems destined to evolve into the brightest cluster galaxy. The high spatial-resolution ACS images reveal several kpc-scale features within and around the radio galaxy. The continuum light is aligned with the radio axis and is resolved into two clumps in the i-band and z-band bands. These components have luminosities ~10^9 L_sun and sizes of a few kpc. The estimated star-formation rate for the whole radio galaxy is ~200 M_sun/yr. A simple model in which the jet has triggered star-formation in these continuum knots is consistent with the available data. An unusual feature is seen in Lyman-alpha emission. A wedge-shaped extension emanates from the radio galaxy perpendicularly to the radio axis. This `wedge' naturally connects to the surrounding, asymmetric, large-scale (~100 kpc) Lyman-alpha halo. We posit that the wedge is a starburst-driven superwind, associated with the first major epoch of formation of the brightest cluster galaxy. The shock and wedge are examples of feedback processes due to both AGN and star-formation in the earliest stages of massive galaxy formation.Comment: 41 pages, 12 figures. Accepted to Ap

    Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Blue Early-Type Galaxies and Red Pairs in RDCS J0910+5422

    Full text link
    The color-magnitude relation has been determined for the RDCS J0910+5422 cluster of galaxies at redshift z = 1.106. Cluster members were selected from HST ACS images, combined with ground--based near--IR imaging and optical spectroscopy. The observed early--type color--magnitude relation (CMR) in (i_775 -z_850) versus z_850 shows intrinsic scatters in color of 0.042 +/- 0.010 mag and 0.044 +/- 0.020 mag for ellipticals and S0s, respectively. From the scatter about the CMR, a mean luminosity--weighted age t > 3.3 Gyr (z > 3) is derived for the elliptical galaxies. Strikingly, the S0 galaxies in RDCS J0910+5422 are systematically bluer in (i_775 - z_850) by 0.07 +/- 0.02 mag, with respect to the ellipticals. The ellipticity distribution as a function of color indicates that the face-on S0s in this particular cluster have likely been classified as elliptical. Thus, if anything, the offset in color between the elliptical and S0 populations may be even more significant. The color offset between S0 and E corresponds to an age difference of ~1 Gyr, for a single-burst solar metallicity model. A solar metallicity model with an exponential decay in star formation will reproduce the offset for an age of 3.5 Gyr, i.e. the S0s have evolved gradually from star forming progenitors. The early--type population in this cluster appears to be still forming. The blue early-type disk galaxies in RDCS J0910+5422 likely represent the direct progenitors of the more evolved S0s that follow the same red sequence as ellipticals in other clusters. Thirteen red galaxy pairs are observed and the galaxies associated in pairs constitute ~40% of the CMR galaxies in this cluster.Comment: ApJ, in pres
    • 

    corecore