399 research outputs found

    Topological Quantum Computing with Only One Mobile Quasiparticle

    Full text link
    In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper we show that any such quantum computation that can be done by braiding nn identical quasiparticles can also be done by moving a single quasiparticle around n-1 other identical quasiparticles whose positions remain fixed.Comment: 4 pages, 5 figure

    Braid Topologies for Quantum Computation

    Full text link
    In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world-lines. We show how to find braids that yield a universal set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly promising for experimental realization.Comment: 4 pages, 4 figures, minor revision

    The Cryogenic Dark Matter Search (CDMS) experiment: Results, status and perspective

    Get PDF
    The Cryogenic Dark Matter Search experiment (CDMS) is using Phonon+Ionization detectors to search for Dark Matter in the form of Weakly Interactive Massive Particles (WIMPs). We report on new results from the operation of CDMS five “towers” at Soudan underground laboratory. With new and more massive detectors, SuperCDMS project has been started since March 2009. We report on the current status of SuperCDMS and its perspective

    SuperCDMS Detector Readout Cryogenic Hardware

    Get PDF
    SuperCDMS employs 1‐inch thick germanium crystals operated below 50mK in a dilution cryostat. Each detector produces ionization and phonon signals. Ionization signals are amplified by JFETs operating at 150K within an assembly mounted on the 4K cryostat stage. These high impedance signals are carried to the FETs by superconducting “vacuum coaxes” which minimize thermal conductivity, stray capacitance, and microphonics. Transition edge sensors produce low‐impedance phonon signals, amplified by SQUID arrays mounted on a 600mK stage. Detectors are mounted in a six‐sided wiring configuration called a “tower”, which carries signals from 40mK to 4K. A flex circuit 3 meters in length carries amplified signals for each detector from 4K to a vacuum bulkhead. We describe the methods used to support the detectors, wiring and amplifier elements at various thermal stages, minimizing electrical noise and thermal loads

    SuperCDMS Detector Fabrication Advances

    Get PDF
    For its dark matter search the SuperCDMS collaboration has developed new Ge detectors using the same athermal phonon sensors and ionization measurement technology of CDMS II but with larger mass, superior sensor performance and increased fabrication efficiency. The improvements in fabrication are described, a comparison of CDMS II and SuperCDMS detector production yield is reported, and future scalability addressed

    The Cryogenic Dark Matter Search (CDMS) : Present Status and Future

    Get PDF
    The CDMS collaboration utilizes Ge detectors for their Weakly Interacting Massive Particle (WIMP) search at the Soudan mine, Minnesota. The final data run of CDMS II is complete and a detector upgrade for SuperCDMS has commenced. A SuperTower of five 1‐inch thick Ge crystals has been installed and undergoing commissioning. Its surface‐event rejection capability should allow SuperCDMS to continue to run background free for the next proposed phases: 15 kg Ge deployment at Soudan, and up to 150 kg Ge deployment at SNOLAB. Recent detector advances to allow a 1 tonne Ge experiment are also discussed

    Bulk and Surface Charge Collection: CDMS Detector Performance and Design Implications

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) searches for Weakly Interacting Massive Particles (WIMPs) with cryogenic germanium particle detectors. These detectors discriminate between nuclear‐recoil candidate and electron‐recoil background events by collecting both phonon and ionization energy from interactions in the crystal. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron‐recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are suface and bulk charge trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices shows that hydrogen passivation of the amorphous silicon blocking layer does not reduce the effects of surface trapping. Other data shows that the iron‐ion implantation used to lower the critical temperature of the tungsten transition‐edge sensors increases surface trapping, causing a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and at the experimental site in Soudan, MN have provided methods to optimize the neutralization process and monitor running conditions to maintain maximal ionization collection

    Robustness of adiabatic quantum computation

    Get PDF
    We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.Comment: 11 pages, 5 figures, REVTe

    Antenna-coupled TES bolometer arrays for CMB polarimetry

    Get PDF
    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL

    Antenna-coupled TES bolometer arrays for CMB polarimetry

    Full text link
    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL
    • 

    corecore