870 research outputs found

    Covariance of Time-Ordered Products Implies Local Commutativity of Fields

    Full text link
    We formulate Lorentz covariance of a quantum field theory in terms of covariance of time-ordered products (or other Green's functions). This formulation of Lorentz covariance implies spacelike local commutativity or anticommutativity of fields, sometimes called microscopic causality or microcausality. With this formulation microcausality does not have to be taken as a separate assumption.Comment: 6 pages, section on non-local theories removed, published versio

    Junction conditions in General Relativity with spin sources

    Full text link
    The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume element instead of an induced metric, so as to allow for generic torsion sources. In general, when the torsion is localized on the domain wall, it is necessary to relax the continuity of the tangential components of the vielbein. In fact it is found that the spin current is proportional to the jump in the vielbein and the stress-energy tensor is proportional to the jump in the spin connection. The consistency of the junction conditions implies a constraint between the direction of flow of energy and the orientation of the spin. As an application, we derive the circularly symmetric solutions for both the rotating string with tension and the spinning dust string in three dimensions. The rotating string with tension generates a rotating truncated cone outside and a flat space-time with inevitable frame dragging inside. In the case of a string made of spinning dust, in opposition to the previous case no frame dragging is present inside, so that in this sense, the dragging effect can be "shielded" by considering spinning instead of rotating sources. Both solutions are consistently lifted as cylinders in the four-dimensional case.Comment: 24 pages, no figures, CECS style. References added and misprints corrected. Published Versio

    Lorentz and CPT Violating Chern-Simons Term in the Formulation of Functional Integral

    Get PDF
    We show that in the functional integral formalism the (finite) coefficient of the induced, Lorentz- and CPT-violating Chern-Simons term, arising from the Lorentz- and CPT-violating fermion sector, is undetermined.Comment: 5 pages, no figure, RevTe

    Generalized Tomonaga-Schwinger equation from the Hadamard formula

    Full text link
    A generalized Tomonaga--Schwinger equation, holding on the entire boundary of a {\em finite} spacetime region, has recently been considered as a tool for studying particle scattering amplitudes in background-independent quantum field theory. The equation has been derived using lattice techniques under assumptions on the existence of the continuum limit. Here I show that in the context of continuous euclidean field theory the equation can be directly derived from the functional integral formalism, using a technique based on Hadamard's formula for the variation of the propagator.Comment: 11 pages, no figure

    Extended de Sitter Theory of Two Dimensional Gravitational Forces

    Full text link
    We present a simple unifying gauge theoretical formulation of gravitational theories in two dimensional spacetime. This formulation includes the effects of a novel matter-gravity coupling which leads to an extended de Sitter symmetry algebra on which the gauge theory is based. Contractions of this theory encompass previously studied cases.Comment: 19pp, no figs., CTP 2228, UCONN-93-

    Anyons as quon particles

    Full text link
    The momentum operator representation of nonrelativistic anyons is developed in the Chern - Simons formulation of fractional statistics. The connection between anyons and the q-deformed bosonic algebra is established.Comment: 10 pages,Late

    Self-dual Vortices in the Generalized Abelian Higgs Model with Independent Chern-Simons Interaction

    Full text link
    Self-dual vortex solutions are studied in detail in the generalized abelian Higgs model with independent Chern-Simons interaction. For special choices of couplings, it reduces to a Maxwell-Higgs model with two scalar fields, a Chern-Simons-Higgs model with two scalar fields, or other new models. We investigate the properties of the static solutions and perform detailed numerical analyses. For the Chern-Simons-Higgs model with two scalar fields in an asymmetric phase, we prove the existence of multisoliton solutions which can be viewed as hybrids of Chern-Simons vortices and CP1CP^1 lumps. We also discuss solutions in a symmetric phase with the help of the corresponding exact solutions in its nonrelativistic limit. The model interpolating all three models---Maxwell-Higgs, Chern-Simons-Higgs, and CP1CP^1 models--- is discussed briefly. Finally we study the possibility of vortex solutions with half-integer vorticity in the special case of the model. Numerical results are negative.Comment: 32 pages, LATEX, SNUTP 92-7

    Supersymmetry and the Chiral Schwinger Model

    Full text link
    We have constructed the N=1/2 supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N=1/2 supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N=1/2 multiplets.Comment: one 9 pages Latex file, one ps file with one figur

    Solving simultaneously Dirac and Ricatti equations

    Full text link
    We analyse the behaviour of the Dirac equation in d=1+1d=1+1 with Lorentz scalar potential. As the system is known to provide a physical realization of supersymmetric quantum mechanics, we take advantage of the factorization method in order to enlarge the restricted class of solvable problems. To be precise, it suffices to integrate a Ricatti equation to construct one-parameter families of solvable potentials. To illustrate the procedure in a simple but relevant context, we resort to a model which has proved useful in showing the phenomenon of fermion number fractionalization

    Operator Ordering Problem of the Nonrelativistic Chern-Simons Theory

    Full text link
    The operator ordering problem due to the quantization or regularization ambiguity in the Chern-Simons theory exists. However, we show that this can be avoided if we require Galilei covariance of the nonrelativistic Abelian Chern-Simons theory even at the quantum level for the extended sources. The covariance can be recovered only by choosing some particular operator orderings for the generators of the Galilei group depending on the quantization ambiguities of the gauge−mattergauge-matter commutation relation. We show that the desired ordering for the unusual prescription is not the same as the well-known normal ordering but still satisfies all the necessary conditions. Furthermore, we show that the equations of motion can be expressed in a similar form regardless of the regularization ambiguity. This suggests that the different regularization prescriptions do not change the physics. On the other hand, for the case of point sources the regularization prescription is uniquely determined, and only the orderings, which are equivalent to the usual one, are allowed.Comment: 18 page
    • 

    corecore