8,377 research outputs found
Some Effects of Wing Planform on Sonic Boom
A wind-tunnel investigation was conducted to determine the effect of wing planform on sonic boom at Mach numbers of 1.7, 2.0, and 2.7. The results of the investigation show that the wing leading-edge sweep is one of the primary planform variables affecting the overpressure characteristics
Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator
The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag
Stellar and Molecular Gas Kinematics of NGC1097: Inflow Driven by a Nuclear Spiral
We present spatially resolved distributions and kinematics of the stars and
molecular gas in the central 320pc of NGC1097. The stellar continuum confirms
the previously reported 3-arm spiral pattern extending into the central 100pc.
The stellar kinematics and the gas distribution imply this is a shadowing
effect due to extinction by gas and dust in the molecular spiral arms. The
molecular gas kinematics show a strong residual (i.e. non-circular) velocity,
which is manifested as a 2-arm kinematic spiral. Linear models indicate that
this is the line-of-sight velocity pattern expected for a density wave in gas
that generates a 3-arm spiral morphology. We estimate the inflow rate along the
arms. Using hydrodynamical models of nuclear spirals, we show that when
deriving the accretion rate into the central region, outflow in the disk plane
between the arms has to be taken into account. For NGC1097, despite the inflow
rate along the arms being ~1.2Msun/yr, the net gas accretion rate to the
central few tens of parsecs is much smaller. The numerical models indicate that
the inflow rate could be as little as ~0.06Msun/yr. This is sufficient to
generate recurring starbursts, similar in scale to that observed, every
20-150Myr. The nuclear spiral represents a mechanism that can feed gas into the
central parsecs of the galaxy, with the gas flow sustainable for timescales of
a Gigayear.Comment: accepted by Ap
Some effects of Mach number and geometry on sonic boom
Mach number and geometry effects on level of sonic boom overpressure and applicability of Whitham theory to calculation of sonic boo
[The Impact of Nuclear Star Formation on Gas Inflow to AGN
Our adaptive optics observations of nearby AGN at spatial resolutions as
small as 0.085arcsec show strong evidence for recent, but no longer active,
nuclear star formation. We begin by describing observations that highlight two
contrasting methods by which gas can flow into the central tens of parsecs. Gas
accumulation in this region will inevitably lead to a starburst, and we discuss
the evidence for such events. We then turn to the impact of stellar evolution
on the further inflow of gas by combining a phenomenological approach with
analytical modelling and hydrodynamic simulations. These complementary
perspectives paint a picture in which all the processes are ultimately
regulated by the mass accretion rate into the central hundred parsecs, and the
ensuing starburst that occurs there. The resulting supernovae delay accretion
by generating a starburst wind, which leaves behind a clumpy interstellar
medium. This provides an ideal environment for slower stellar outflows to
accrete inwards and form a dense turbulent disk on scales of a few parsecs.
Such a scenario may resolve the discrepancy between the larger scale structure
seen with adaptive optics and the small scale structure seen with VLTI.Comment: to appear in: Co-Evolution of Central Black Holes and Galaxies; 7
page
Filamentary Star Formation in NGC 1275
We examine the star formation in the outer halo of NGC~1275, the central
galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical
images obtained with the Hubble Space Telescope. We have identified a
population of very young, compact star clusters with typical ages of a few Myr.
The star clusters are organised on multiple-kiloparsec scales. Many of these
star clusters are associated with "streaks" of young stars, the combination of
which has a cometary appearance. We perform photometry on the star clusters and
diffuse stellar streaks, and fit their spectral energy distributions to obtain
ages and masses. These young stellar populations appear to be normal in terms
of their masses, luminosities and cluster formation efficiency; <10% of the
young stellar mass is located in star clusters. Our data suggest star formation
is associated with the evolution of some of the giant gas filaments in NGC~1275
that become gravitationally unstable on reaching and possibly stalling in the
outer galaxy. The stellar streaks then could represent stars moving on
ballistic orbits in the potential well of the galaxy cluster. We propose a
model where star-forming filaments, switched on ~50~Myr ago and are currently
feeding the growth of the NGC~1275 stellar halo at a rate of ~2-3 solar masses
per year. This type of process may also build stellar halos and form isolated
star clusters in the outskirts of youthful galaxies.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Recommended from our members
Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif
Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc ¼ N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and
introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows b-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates b-sheet formation by both peptides at sufficiently high concentration. Strong
alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and smallangle
X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel b-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions
Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis
Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions
Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity
- …