980 research outputs found

    Soliton attenuation and emergent hydrodynamics in fragile matter

    Get PDF
    Disordered packings of soft grains are fragile mechanical systems that loose rigidity upon lowering the external pressure towards zero. At zero pressure, we find that any infinitesimal strain-impulse propagates initially as a non-linear solitary wave progressively attenuated by disorder. We demonstrate that the particle fluctuations generated by the solitary-wave decay, can be viewed as a granular analogue of temperature. Their presence is manifested by two emergent macroscopic properties absent in the unperturbed granular packing: a finite pressure that scales with the injected energy (akin to a granular temperature) and an anomalous viscosity that arises even when the microscopic mechanisms of energy dissipation are negligible. Consistent with the interpretation of this state as a fluid-like thermalized state, the shear modulus remains zero. Further, we follow in detail the attenuation of the initial solitary wave identifying two distinct regimes : an initial exponential decay, followed by a longer power law decay and suggest simple models to explain these two regimes.Comment: 8 pages, 3 Figure

    Nematic Textures in Spherical Shells

    Get PDF
    The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the ground state has four short ½ disclination lines but, as the thickness of the film increases, a three-dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an exact solution for the nematic ground state in the one Frank constant approximation and study the stability of the corresponding texture against thermal fluctuations

    Crystallography on Curved Surfaces

    Full text link
    We study static and dynamical properties that distinguish two dimensional crystals constrained to lie on a curved substrate from their flat space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented in the context of a model surface amenable to full analytical treatment. We find that glide diffusion of isolated dislocations is suppressed by a binding potential of purely geometrical origin. Finally, the energetics and biased diffusion dynamics of point defects such as vacancies and interstitials is explained in terms of their geometric potential.Comment: 12 Pages, 8 Figure

    Grounding co-writing: An analysis of the theoretical basis of a new approach in mental health care

    Get PDF
    This contribution aims to highlight the theoretical and epistemological premises of the co-writing experience, a practice where a clinician and a patient are mutually engaged in jointly or collaboratively writing a narrative related to the patient’s experience. Unlike a typical set of therapeutic techniques, co-writing is based on sharing perspectives and meanings about the experience of crisis, recovery, and the therapeutic process. The paper identifies and briefly describes four non-clinical epistemological paradigms on which it is grounded: ethnography, values-based practice, narrative care, and phenomenology. Although they differ in several ways, at the same time, they seem to share some common features that the paper investigates and comments. For clinicians, nurses, researchers and Mental Health Service managers, attention to the users and to the improvement of their active roles represents not only a strategy for the empowerment of results, but also the access door to a different perspective which relies on a renewed conceptualization of the mental disease nature that may lead to overcoming the epistemic asymmetry between the ‘expert’ and the ‘other’ in favor of intersubjective dialogue

    Shocks near Jamming

    Get PDF
    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed, and demonstrate that the elementary excitations are strongly non-linear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.Comment: Revised version. Accepted for publication in Phys. Rev. Let

    Anomalous coupling between topological defects and curvature

    Full text link
    We investigate a counterintuitive geometric interaction between defects and curvature in thin layers of superfluids, superconductors and liquid crystals deposited on curved surfaces. Each defect feels a geometric potential whose functional form is determined only by the shape of the surface, but whose sign and strength depend on the transformation properties of the order parameter. For superfluids and superconductors, the strength of this interaction is proportional to the square of the charge and causes all defects to be repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals in the one elastic constant approximation, charges between 0 and 4Ï€4\pi are attracted by regions of positive curvature while all other charges are repelled.Comment: 5 pages, 4 figures, minor changes, accepted for publication in Phys. Rev. Let

    General rules for bosonic bunching in multimode interferometers

    Full text link
    We perform a comprehensive set of experiments that characterize bosonic bunching of up to 3 photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently in [1,2], predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new, and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. Besides its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.Comment: 6 pages, 4 figures, and supplementary material (4 pages, 1 figure
    • …
    corecore