156,633 research outputs found
Black hole as an Information Eraser
We discuss the identity of black hole entropy and show that the first law of
black hole thermodynamics, in the case of a Schwarzschild black hole, can be
derived from Landauer's principle by assuming that the black hole is one of the
most efficient information erasers in systems of a given temperature. The term
"most efficient" implies that minimal energy is required to erase a given
amount of information. We calculate the discrete mass spectra and the entropy
of a Schwarzschild black hole assuming that the black hole processes
information in unit of bits. The black hole entropy acquires a sub-leading
contribution proportional to the logarithm of its mass-squared in addition to
the usual mass-squared term without an artificial cutoff. We also argue that
the minimum of the black hole mass is .Comment: 12 pages, 4 figures, minor change
Temperature-dependent errors in nuclear lattice simulations
We study the temperature dependence of discretization errors in nuclear
lattice simulations. We find that for systems with strong attractive
interactions the predominant error arises from the breaking of Galilean
invariance. We propose a local "well-tempered" lattice action which eliminates
much of this error. The well-tempered action can be readily implemented in
lattice simulations for nuclear systems as well as cold atomic Fermi systems.Comment: 33 pages, 17 figure
Search for Free Fractional Electric Charge Elementary Particles
We have carried out a direct search in bulk matter for free fractional
electric charge elementary particles using the largest mass single sample ever
studied - about 17.4 mg of silicone oil. The search used an improved and highly
automated Millikan oil drop technique. No evidence for fractional charge
particles was found. The concentration of particles with fractional charge more
than 0.16e (e being the magnitude of the electron charge) from the nearest
integer charge is less than particles per nucleon with 95%
confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR
Resolution of the strong CP problem
It is shown that the quark mass aligns QCD vacuum in such a way that
the strong CP is conserved, resolving the strong CP problem.Comment: 9 pages;v2 slightly rewritten and expanded;v3 a few points
clarified;v4 minor changes, journal versio
Relativistic Coulomb Green's function in -dimensions
Using the operator method, the Green's functions of the Dirac and
Klein-Gordon equations in the Coulomb potential are derived for
the arbitrary space dimensionality . Nonrelativistic and quasiclassical
asymptotics of these Green's functions are considered in detail.Comment: 9 page
Vacuum polarization radiative correction to the parity violating electron scattering on heavy nuclei
The effect of vacuum polarization on the parity violating asymmetry in the
elastic electron-nucleus scattering is considered. Calculations are performed
in the high-energy approximation with an exact account for the electric field
of the nucleus. It is shown that the radiative correction to the parity
violating asymmetry is logarithmically enhanced and the value of the correction
is about -1%.Comment: 6 pages, 3 figures, REVTex
Generalized Hamilton-Jacobi equations for nonholonomic dynamics
Employing a suitable nonlinear Lagrange functional, we derive generalized
Hamilton-Jacobi equations for dynamical systems subject to linear velocity
constraints. As long as a solution of the generalized Hamilton-Jacobi equation
exists, the action is actually minimized (not just extremized)
- âŠ