18,874 research outputs found
Preliminary investigations of ion thruster cathodes
Mercury vapor fed hollow cathodes for electron bombardment ion thruster
Galactic Spiral Structure
We describe the structure and composition of six major stellar streams in a
population of 20 574 local stars in the New Hipparcos Reduction with known
radial velocities. We find that, once fast moving stars are excluded, almost
all stars belong to one of these streams. The results of our investigation have
lead us to re-examine the hydrogen maps of the Milky Way, from which we
identify the possibility of a symmetric two-armed spiral with half the
conventionally accepted pitch angle. We describe a model of spiral arm motions
which matches the observed velocities and composition of the six major streams,
as well as the observed velocities of the Hyades and Praesepe clusters at the
extreme of the Hyades stream. We model stellar orbits as perturbed ellipses
aligned at a focus in coordinates rotating at the rate of precession of
apocentre. Stars join a spiral arm just before apocentre, follow the arm for
more than half an orbit, and leave the arm soon after pericentre. Spiral
pattern speed equals the mean rate of precession of apocentre. Spiral arms are
shown to be stable configurations of stellar orbits, up to the formation of a
bar and/or ring. Pitch angle is directly related to the distribution of orbital
eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve
to form bars and rings. We show that orbits of gas clouds are stable only in
bisymmetric spirals. We conclude that spiral galaxies evolve toward grand
design two-armed spirals. We infer from the velocity distributions that the
Milky Way evolved into this form about 9 Gyrs ago.Comment: Published in Proc Roy Soc A. A high resolution version of this file
can be downloaded from http://papers.rqgravity.net/SpiralStructure.pdf. A
simplified account with animations begins at
http://rqgravity.net/SpiralStructur
Bohmian Mechanics and Quantum Information
Many recent results suggest that quantum theory is about information, and
that quantum theory is best understood as arising from principles concerning
information and information processing. At the same time, by far the simplest
version of quantum mechanics, Bohmian mechanics, is concerned, not with
information but with the behavior of an objective microscopic reality given by
particles and their positions. What I would like to do here is to examine
whether, and to what extent, the importance of information, observation, and
the like in quantum theory can be understood from a Bohmian perspective. I
would like to explore the hypothesis that the idea that information plays a
special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure
The "Unromantic Pictures" of Quantum Theory
I am concerned with two views of quantum mechanics that John S. Bell called
``unromantic'': spontaneous wave function collapse and Bohmian mechanics. I
discuss some of their merits and report about recent progress concerning
extensions to quantum field theory and relativity. In the last section, I
speculate about an extension of Bohmian mechanics to quantum gravity.Comment: 37 pages LaTeX, no figures; written for special volume of J. Phys. A
in honor of G.C. Ghirard
Lagrangian Variational Framework for Boundary Value Problems
A boundary value problem is commonly associated with constraints imposed on a
system at its boundary. We advance here an alternative point of view treating
the system as interacting "boundary" and "interior" subsystems. This view is
implemented through a Lagrangian framework that allows to account for (i) a
variety of forces including dissipative acting at the boundary; (ii) a
multitude of features of interactions between the boundary and the interior
fields when the boundary fields may differ from the boundary limit of the
interior fields; (iii) detailed pictures of the energy distribution and its
flow; (iv) linear and nonlinear effects. We provide a number of elucidating
examples of the structured boundary and its interactions with the system
interior. We also show that the proposed approach covers the well known
boundary value problems.Comment: 41 pages, 3 figure
Kinetic pinning and biological antifreezes
Biological antifreezes protect cold-water organisms from freezing. An example
are the antifreeze proteins (AFPs) that attach to the surface of ice crystals
and arrest growth. The mechanism for growth arrest has not been heretofore
understood in a quantitative way. We present a complete theory based on a
kinetic model. We use the `stones on a pillow' picture. Our theory of the
suppression of the freezing point as a function of the concentration of the AFP
is quantitatively accurate. It gives a correct description of the dependence of
the freezing point suppression on the geometry of the protein, and might lead
to advances in design of synthetic AFPs.Comment: 4 pages, 4 figure
Spin anisotropy effects in dimer single molecule magnets
We present a model of equal spin dimer single molecule magnets. The
spins within each dimer interact via the Heisenberg and the most general set of
four quadratic anisotropic spin interactions with respective strengths and
, and with the magnetic induction . We solve the model
exactly for , and for antiferromagnetic Heisenberg couplings
(), present curves at low for these cases. Low-
curves for and electron paramagnetic susceptibility
for are also provided. For weak anisotropy
interactions, we employ a perturbative treatment, and show that the Hartree and
extended Hartree approximations lead to reliable analytic results at low
and large for these quantities and for the inelastic neutron scattering
cross-section . Our results are discussed with
regard to existing experiments on Fe dimer
single molecule magnets, and suggest that one of them contains a substantial
amount of single-ion anisotropy, without any sizeable global spin anisotropy.
We urge further experiments of the above types on single crystals of Fe and
on some [Mn] dimers, in order to elucidate the precise values
of the various microscopic interactions.Comment: 30 pages, 25 figures, submitted to Phys. Rev.
Elastic scattering losses in the four-wave mixing of Bose Einstein Condensates
We introduce a classical stochastic field method that accounts for the
quantum fluctuations responsible for spontaneous initiation of various atom
optics processes. We assume a delta-correlated Gaussian noise in all initially
empty modes of atomic field. Its strength is determined by comparison with the
analytical results for two colliding condensates in the low loss limit. Our
method is applied to the atomic four wave mixing experiment performed at MIT
[Vogels {\it et. al.}, Phys. Rev. Lett. {\bf 89}, 020401, (2002)], for the
first time reproducing experimental data
- …