18,874 research outputs found

    Preliminary investigations of ion thruster cathodes

    Get PDF
    Mercury vapor fed hollow cathodes for electron bombardment ion thruster

    Galactic Spiral Structure

    Full text link
    We describe the structure and composition of six major stellar streams in a population of 20 574 local stars in the New Hipparcos Reduction with known radial velocities. We find that, once fast moving stars are excluded, almost all stars belong to one of these streams. The results of our investigation have lead us to re-examine the hydrogen maps of the Milky Way, from which we identify the possibility of a symmetric two-armed spiral with half the conventionally accepted pitch angle. We describe a model of spiral arm motions which matches the observed velocities and composition of the six major streams, as well as the observed velocities of the Hyades and Praesepe clusters at the extreme of the Hyades stream. We model stellar orbits as perturbed ellipses aligned at a focus in coordinates rotating at the rate of precession of apocentre. Stars join a spiral arm just before apocentre, follow the arm for more than half an orbit, and leave the arm soon after pericentre. Spiral pattern speed equals the mean rate of precession of apocentre. Spiral arms are shown to be stable configurations of stellar orbits, up to the formation of a bar and/or ring. Pitch angle is directly related to the distribution of orbital eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve to form bars and rings. We show that orbits of gas clouds are stable only in bisymmetric spirals. We conclude that spiral galaxies evolve toward grand design two-armed spirals. We infer from the velocity distributions that the Milky Way evolved into this form about 9 Gyrs ago.Comment: Published in Proc Roy Soc A. A high resolution version of this file can be downloaded from http://papers.rqgravity.net/SpiralStructure.pdf. A simplified account with animations begins at http://rqgravity.net/SpiralStructur

    Bohmian Mechanics and Quantum Information

    Full text link
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure

    The "Unromantic Pictures" of Quantum Theory

    Get PDF
    I am concerned with two views of quantum mechanics that John S. Bell called ``unromantic'': spontaneous wave function collapse and Bohmian mechanics. I discuss some of their merits and report about recent progress concerning extensions to quantum field theory and relativity. In the last section, I speculate about an extension of Bohmian mechanics to quantum gravity.Comment: 37 pages LaTeX, no figures; written for special volume of J. Phys. A in honor of G.C. Ghirard

    Lagrangian Variational Framework for Boundary Value Problems

    Full text link
    A boundary value problem is commonly associated with constraints imposed on a system at its boundary. We advance here an alternative point of view treating the system as interacting "boundary" and "interior" subsystems. This view is implemented through a Lagrangian framework that allows to account for (i) a variety of forces including dissipative acting at the boundary; (ii) a multitude of features of interactions between the boundary and the interior fields when the boundary fields may differ from the boundary limit of the interior fields; (iii) detailed pictures of the energy distribution and its flow; (iv) linear and nonlinear effects. We provide a number of elucidating examples of the structured boundary and its interactions with the system interior. We also show that the proposed approach covers the well known boundary value problems.Comment: 41 pages, 3 figure

    Kinetic pinning and biological antifreezes

    Full text link
    Biological antifreezes protect cold-water organisms from freezing. An example are the antifreeze proteins (AFPs) that attach to the surface of ice crystals and arrest growth. The mechanism for growth arrest has not been heretofore understood in a quantitative way. We present a complete theory based on a kinetic model. We use the `stones on a pillow' picture. Our theory of the suppression of the freezing point as a function of the concentration of the AFP is quantitatively accurate. It gives a correct description of the dependence of the freezing point suppression on the geometry of the protein, and might lead to advances in design of synthetic AFPs.Comment: 4 pages, 4 figure

    Spin anisotropy effects in dimer single molecule magnets

    Full text link
    We present a model of equal spin s1s_1 dimer single molecule magnets. The spins within each dimer interact via the Heisenberg and the most general set of four quadratic anisotropic spin interactions with respective strengths JJ and {Jj}\{J_j\}, and with the magnetic induction B{\bf B}. We solve the model exactly for s1=1/2,1,5/2s_1=1/2, 1, 5/2, and for antiferromagnetic Heisenberg couplings (J<0J<0), present M(B){\bf M}({\bf B}) curves at low TT for these cases. Low-TT CV(B)C_V({\bf B}) curves for s1=1/2s_1=1/2 and electron paramagnetic susceptibility χ(B,ω)\chi({\bf B},\omega) for s1=1s_1=1 are also provided. For weak anisotropy interactions, we employ a perturbative treatment, and show that the Hartree and extended Hartree approximations lead to reliable analytic results at low TT and large BB for these quantities and for the inelastic neutron scattering cross-section S(B,q,ω)S({\bf B}, {\bf q},\omega). Our results are discussed with regard to existing M(B){\bf M}({\bf B}) experiments on s1=5/2s_1=5/2 Fe2_2 dimer single molecule magnets, and suggest that one of them contains a substantial amount of single-ion anisotropy, without any sizeable global spin anisotropy. We urge further experiments of the above types on single crystals of Fe2_2 and on some s=9/2s_=9/2 [Mn4_4]2_2 dimers, in order to elucidate the precise values of the various microscopic interactions.Comment: 30 pages, 25 figures, submitted to Phys. Rev.

    Elastic scattering losses in the four-wave mixing of Bose Einstein Condensates

    Full text link
    We introduce a classical stochastic field method that accounts for the quantum fluctuations responsible for spontaneous initiation of various atom optics processes. We assume a delta-correlated Gaussian noise in all initially empty modes of atomic field. Its strength is determined by comparison with the analytical results for two colliding condensates in the low loss limit. Our method is applied to the atomic four wave mixing experiment performed at MIT [Vogels {\it et. al.}, Phys. Rev. Lett. {\bf 89}, 020401, (2002)], for the first time reproducing experimental data
    • …
    corecore