13,924 research outputs found

    Magnetic Properties of Pd_(0.996)Mn_(0.004) Films for High Resolution Thermometry

    Get PDF
    We have previously reported on the temperature and magnetic field dependence of the magnetic susceptibility of thin Pd_(1−x)Mn_x alloy films. Extensive new measurements on sputtered films show that a commercial quality sputtering process produces a film with the same dependence of Curie temperature on x as previously reported for bulk samples of the same material. These measurements and parameters from the Renormalization Group theory for a Heisenberg ferromagnet, yield an estimate for T_c of 1.16 ± 0.01 K when x − 0.004, consistent with previously reported bulk result

    Measurement of the SOC State Specific Heat in ^4He

    Get PDF
    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tlambda. All the helium in the sample is then at the same reduced temperature tSOC = ((T[sub SOC] - T[sub lambda])/T[sub lambda]) and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C[del]T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C[del]T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tlambda the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tlambda, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)]

    Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Get PDF
    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ[equivalent]C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ~7–12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement

    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging

    Get PDF
    The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data

    Reversibility in the Extended Measurement-based Quantum Computation

    Get PDF
    When applied on some particular quantum entangled states, measurements are universal for quantum computing. In particular, despite the fondamental probabilistic evolution of quantum measurements, any unitary evolution can be simulated by a measurement-based quantum computer (MBQC). We consider the extended version of the MBQC where each measurement can occur not only in the (X,Y)-plane of the Bloch sphere but also in the (X,Z)- and (Y,Z)-planes. The existence of a gflow in the underlying graph of the computation is a necessary and sufficient condition for a certain kind of determinism. We extend the focused gflow (a gflow in a particular normal form) defined for the (X,Y)-plane to the extended case, and we provide necessary and sufficient conditions for the existence of such normal forms

    On the Spin History of the X-ray Pulsar in Kes 73: Further Evidence For an Utramagnetized Neutron Star

    Get PDF
    In previous papers, we presented the discovery of a 12-s X-ray pulsar in the supernova remnant Kes 73, providing the first direct evidence for an ultramagnetized neutron star, a magnetar, with an equivalent dipole field of nearly twenty times the quantum critical magnetic field. Our conclusions were based on two epochs of measurement of the spin, along with an age estimate of the host supernova remnant. Herein, we present a spin chronology of the pulsar using additional GINGA, ASCA, XTE, & SAX datasets spanning over a decade. Timing and spectral analysis confirms our initial results and severely limit an accretion origin for the observed flux. Over the 10 year baseline, the pulsar is found to undergo a rapid, constant spindown, while maintaining a steady flux and an invariant pulse profile. Within the measurement uncertainties, no systematic departures from a linear spin-down are found - departures as in the case of glitches or simply stochastic fluctuations in the pulse times-of-arrival (e.g. red timing noise). We suggest that this pulsar is akin to the soft gamma-ray repeaters, however, it is remarkably stable and has yet to display similar outbursts; future gamma-ray activity from this object is likely.Comment: 6 pages with 3 embedded figures, LaTex, emulateapj.sty. Submitted to the ApJ Letter

    Heat transport in Bi_{2+x}Sr_{2-x}CuO_{6+\delta}: departure from the Wiedemann-Franz law in the vicinity of the metal-insulator transition

    Full text link
    We present a study of heat transport in the cuprate superconductor Bi_{2+x}Sr_{2-x}CuO_{6+\delta} at subkelvin temperatures and in magnetic fields as high as 25T. In several samples with different doping levels close to optimal, the linear-temperature term of thermal conductivity was measured both at zero-field and in presence of a magnetic field strong enough to quench superconductivity. The zero-field data yields a superconducting gap of reasonable magnitude displaying a doping dependence similar to the one reported in other families of cuprate. The normal-state data together with the results of the resistivity measurements allows us to test the Wiedemann-Franz(WF) law, the validity of which was confirmed in an overdoped sample in agreement with previous studies. In contrast, a systematic deviation from the WF law was resolved for samples displaying either a lower doping content or a higher disorder. Thus, in the vicinity of the metal-insulator cross-over, heat conduction in the zero-temperature limit appears to become significantly larger than predicted by the WF law. Possible origins of this observation are discussed.Comment: 9 pages including 7 figures, submitted to Phys. Rev.

    Influence of the photon - neutrino processes on magnetar cooling

    Full text link
    The photon-neutrino processes γe±→e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu, γ→ννˉ\gamma \to \nu \bar \nu and γγ→ννˉ\gamma \gamma \to \nu \bar \nu are investigated in the presence of a strongly magnetized and dense electron-positron plasma. The amplitudes of the reactions γe±→e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γγ→ννˉ\gamma \gamma \to \nu \bar \nu are obtained. In the case of a cold degenerate plasma contributions of the considering processes to neutrino emissivity are calculated. It is shown that contribution of the process γγ→ννˉ\gamma \gamma \to \nu \bar \nu to neutrino emissivity is supressed in comparision with the contributions of the processes γe±→e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γ→ννˉ\gamma \to \nu \bar \nu. The constraint on the magnetic field strength in the magnetar outer crust is obtained.Comment: 8 pages, LaTeX, 2 PS figures, based on the talk presented by D.A. Rumyantsev at the XV International Seminar Quarks'2008, Sergiev Posad, Moscow Region, May 23-29, 2008, to appear in the Proceeding

    Dynamical evolution of globular cluster systems in clusters of galaxies I. The case of NGC 1404 in the Fornax cluster

    Full text link
    We investigate, via numerical simulations, the tidal stripping and accretion of globular clusters (GCs). In particular, we focus on creating models that simulate the situation for the GC systems of NGC 1404 and NGC 1399 in the Fornax cluster, which have poor (specific frequency SNS_{\rm N} ∼\sim 2) and rich (SNS_{\rm N} ∼\sim 10) GC systems respectively. We initially assign NGC 1404 in our simulation a typical SNS_{\rm N} (∼\sim 5) for cluster ellipticals, and find that its GC system can only be reduced through stripping to the presently observed value, if its orbit is highly eccentric (with orbital eccentricity of >> 0.5) and if the initial scale length of the GCs system is about twice as large as the effective radius of NGC 1404 itself. These stripped GCs can be said to have formed a `tidal stream' of intracluster globular clusters (ICGCs) orbiting the centre of Fornax cluster (many of which would be assigned to NGC 1399 in an imaging study). The physical properties of these GCs (e.g., number, radial distribution) depend on the orbit and initial distribution of GCs in NGC 1404. Our simulations also predict a trend for SNS_{\rm N} to rise with increasing clustercentric distance - a trend for which there is some observational support in the Fornax cluster.Comment: 12 pages 12 figures, MNRAS in pres
    • …
    corecore