51,712 research outputs found

    X-ray photoemission characterization of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} films

    Full text link
    The Curie temperature and x-ray photoemission spectra of thin films of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} (LCSMO) have been studied as a function of the Ca/Sr ratio. The films were grown by off-axis cosputtering from individual targets of La_{0.67}Ca_{0.33}MnO_{3} (LCMO) and La_{0.67}Sr_{0.33}MnO_{3} (LSMO) onto (100) oriented NdGaO_{3} substrates. The films grow with a (100) orientation, with no other orientations observed by x-ray diffraction. For the alloy mixtures, the Curie temperature, T_C, varies slowly as the Ca/Sr is decreased, remaining \approx 300 K, while for the LCMO and LSMO films T_C is 260 and 330 K, respectively. The Mn-O valence structure is composed of two dominant peaks, whose positions undergo a change as the Ca fraction is decreased. The core lines behave as linear combinations of lines from pure LCMO and LSMO.Comment: 3 pages, 5 eps figures. To be published in Journal of Applied Physics (Proceedings of MMM'98

    Encapsulation of DNA by cationic diblock copolymer vesicles

    Full text link
    Encapsulation of dsDNA fragments (contour length 54 nm) by the cationic diblock copolymer poly(butadiene-b-N-methyl 4-vinyl pyridinium) [PBd-b-P4VPQ] has been studied with phase contrast, polarized light, and fluorescence microscopy, as well as scanning electron microscopy. Encapsulation was achieved with a single emulsion technique. For this purpose, an aqueous DNA solution is emulsified in an organic solvent (toluene) and stabilized by the amphiphilic diblock copolymer. The PBd block forms an interfacial brush, whereas the cationic P4VPQ block complexes with DNA. A subsequent change of the quality of the organic solvent results in a collapse of the PBd brush and the formation of a capsule. Inside the capsules, the DNA is compacted as shown by the appearance of birefringent textures under crossed polarizers and the increase in fluorescence intensity of labeled DNA. The capsules can also be dispersed in aqueous medium to form vesicles, provided they are stabilized with an osmotic agent (polyethylene glycol) in the external phase. It is shown that the DNA is released from the vesicles once the osmotic pressure drops below 105 N/m2 or if the ionic strength of the supporting medium exceeds 0.1 M. The method has also proven to be efficient to encapsulate pUC18 plasmid in sub-micron sized vesicles and the general applicability of the method has been demonstrated by the preparation of the charge inverse system: cationic poly(ethylene imine) encapsulated by the anionic diblock poly(styrene-b-acrylic acid).Comment: 35 pages, 11 figures, accepted for publication in Langmui

    The large-scale jet-powered radio nebula of Circinus X-1

    Get PDF
    We present multi-epoch observations of the radio nebula around the neutron star X-ray binary Circinus X-1 made at 1.4 and 2.5 GHz with the Australia Telescope Compact Array between October 2000 and September 2004. The nebula can be seen as a result of the interaction between the jet from the system and the interstellar medium and it is likely that we are actually looking toward the central X-ray binary system through the jet-powered radio lobe. The study of the nebula thus offers a unique opportunity to estimate for the first time using calorimetry the energetics of a jet from an object clearly identified as a neutron star. An extensive discussion on the energetics of the complex is presented: a first approach is based on the minimum energy estimation, while a second one employs a self-similar model of the interaction between the jets and the surrounding medium. The results suggest an age for the nebula of \leq 10^5 years and a corresponding time-averaged jet power \geq 10^{35} erg s^{-1}. During periodic flaring episodes, the instantaneous jet power may reach values of similar magnitude to the X-ray luminosity.Comment: Accepted to MNRA

    E&F Chaos: a user friendly software package for nonlinear economic dynamics

    Get PDF
    The use of nonlinear dynamic models in economics and finance has expanded rapidly in the last two decades. Numerical simulation is crucial in the investigation of nonlinear systems. E&F Chaos is an easy-to-use and freely available software package for simulation of nonlinear dynamic models to investigate stability of steady states and the presence of periodic orbits and chaos by standard numerical simulation techniques such as time series, phase plots, bifurcation diagrams, Lyapunov exponent plots, basin boundary plots and graphical analysis. The package contains many well-known nonlinear models, including applications in economics and finance, and is easy to use for non-specialists. New models and extensions or variations are easy to implement within the software package without the use of a compiler or other software. The software is demonstrated by investigating the dynamical behavior of some simple examples of the familiar cobweb model, including an extension with heterogeneous agents and asynchronous updating of strategies. Simulations with the E&F chaos software quickly provide information about local and global dynamics and easily lead to challenging questions for further mathematical analysis.

    All-optical coherent population trapping with defect spin ensembles in silicon carbide

    Get PDF
    Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addressing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin S=1S=1 structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.Comment: 28 page document: Pages 1-14 main text (with 3 figures); pages 15-28 supplementary information (with 5 figues). v2 has minor correction

    An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations

    Full text link
    We present dynamical models for the massive globular cluster G1. The goal is to measure or place a significant upper limit on the mass of any central black hole. Whether or not globular clusters contain central massive black holes has important consequences for a variety of studies. We use new kinematic data obtained with Keck and new photometry from the Hubble Space Telescope. The Keck spectra allow us to obtain kinematics out to large radii that are required to pin down the mass-to-light ratio of the dynamical model and the orbital structure. The Hubble Space Telescope observations give us a factor of two better spatial resolution for the surface brightness profile. By fitting non-parametric, spherical, isotropic models we find a best-fit black hole mass of 1.7(+-0.3)e4 Msun. Fully general axisymmetric orbit-based models give similar results, with a black hole mass of 1.8(+-0.5)e4 Msun. The no-black hole model has Delta_chi^2=5 (marginalized over mass-to-light ratio), implying less than 3% significance. We have taken into account any change in the mass-to-light ratio in the center due to stellar remnants. These results are consistent with our previous estimate in Gebhardt, Rich & Ho (2002), and inconsistent with the analysis of Baumgardt et al. (2003) who claim that G1 does not show evidence for a black hole. These new results make G1 the best example of a cluster that contains an intermediate-mass black hole.Comment: accepted for publication in the Astrophysical Journa

    Characterization of transport and magnetic properties in thin film La(0.67)(Ca(x)Sr(1-x))(0.33)MnO(3) mixtures

    Full text link
    We have grown thin films of (100) oriented La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} on (100) NdGaO_{3} substrates by off-axis sputtering. We have looked at the changes in the resistivity and magnetoresistance of the samples as the Ca/Sr ratio was varied. We find that as the calcium fraction is decreased, the lattice match to the substrate decreases, and the films become more disordered, as observed in transport measurements and the variation in Curie and peak resistance temperatures. We find a correlation between the temperature independent and T^2 terms to the low temperature resistivity. The room temperature magnetoresistance exhibits a maximum as the peak temperature is increased by the substitution of Sr for Ca, and a change in the field dependence to the resistivity at room temperature is observed.Comment: 5 pages, 6 eps figures, to be published in Journal of Applied Physic

    Field-induced superconductor to insulator transition in Josephson-junction ladders

    Full text link
    The superconductor to insulator transition is studied in a self-charging model for a ladder of Josephson-junctions in presence of an external magnetic field. Path integral Monte Carlo simulations of the equivalent (1+1)-dimensional classical model are used to study the phase diagram and critical behavior. In addition to a superconducting (vortex-free) phase, a vortex phase can also occur for increasing magnetic field and small charging energy. It is found that an intervening insulating phase separates the superconducting from the vortex phases. Surprisingly, a finite-size scaling analysis shows that the field-induced superconducting to insulator transition is in the KT universality class even tough the external field breaks time-reversal symmetry.Comment: 5 pages, 7 figures, to appear in Phys. Rev.

    Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    Get PDF
    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors It is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5 nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence - caused by photoionization and subsequent electron impact ionization by free electrons - is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.Comment: submitted to J. Phys. D. 16 pages, 8 figure
    corecore