234 research outputs found

    Alloying of Sn in the surface layer of Ag(111)

    Full text link

    Broken symmetry induced band splitting in the Ag

    Full text link

    Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction

    Full text link
    At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly transforms into a (3x3) one, upon cooling below 200 K. The photoemission spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two components which are attributed to inequivalent Sn atoms in T4 bonding sites. This structure has been explored by photoelectron diffraction experiments performed at the ALOISA beamline of the Elettra storage ring in Trieste (Italy). The modulation of the intensities of the two Sn components, caused by the backscattering of the underneath Ge atoms, has been measured as a function of the emission angle at fixed kinetic energies and viceversa. The bond angle between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has been measured by taking polar scans along the main symmetry directions and it was found almost equivalent for the two components. The corresponding bond lengths are also quite similar, as obtained by studying the dependence on the photoelectron kinetic energy, while keeping the photon polarization and the collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A clear difference between the two bonding sites is observed when studying the energy dependence at normal emission, where the sensitivity to the Sn height above the Ge atom in the second layer is enhanced. This vertical distance is found to be 0.3 Angstroms larger for one Sn atom out of the three contained in the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a structure where the Sn atom and its three nearest neighbour Ge atoms form a rather rigid unit that presents a strong vertical distortion with respect to the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference

    Phase transitions in two dimensions - the case of Sn adsorbed on Ge(111) surfaces

    Full text link
    Accurate atomic coordinates of the room-temperature (root3xroot3)R30degree and low-temperature (3x3) phases of 1/3 ML Sn on Ge(111) have been established by grazing-incidence x-ray diffraction with synchrotron radiation. The Sn atoms are located solely at T4-sites in the (root3xroot3)R30degree structure. In the low temperature phase one of the three Sn atoms per (3x3) unit cell is displaced outwards by 0.26 +/- 0.04 A relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate.Comment: RevTeX, 5 pages including 2 figure
    corecore