96 research outputs found
Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications
The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019. The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction. © 2017 IOP Publishing Ltd and Sissa Medialab srl
Schedule-dependent activity of 5-fluorouracil and irinotecan combination in the treatment of human colorectal cancer: in vitro evidence and a phase I dose-escalating clinical trial
Several schedules of 5-fluorouracil (FU) and irinotecan (IRI) have been shown to improve overall survival in advanced colorectal cancer (CRC). Preclinical evidence suggests that the sequential administration of IRI and FU produces synergistic activity, although their clinical use has not been fully optimised. We investigated the interaction between short-term exposure to SN-38, the active metabolite of IRI, and prolonged exposure to FU in human CRC HT-29 cells and observed that the synergism of action between the two agents can be increased by extending the time of cell exposure to FU and reducing the interval between administration of the two agents. Based on these findings, we performed a phase I trial in 25 advanced CRC patients using a modified IRI/FU regimen as first-line therapy and evaluated three dose levels of IRI (150–300 mg/m2) and two of continuous infusion of FU (800–1000 mg/m2) in a 3-weekly schedule. The most severe grade III–IV toxicities were neutropoenia in four cycles and diarrhoea in three. One patient achieved complete response (4%), 12 a partial response (48%), the overall response rate was 52% (±20, 95% CI); seven of 25 patients had stable disease (28%), the overall disease control was 80% (±16, 95% CI). This modified IRI/FU schedule is feasible and exhibits potentially interesting clinical activity
New insights in the relation between climate and slope failures at high-elevation sites
Climate change is now unequivocal; however, the type and extent of terrestrial impacts are still widely debated. Among these, the effects on slope stability are receiving a growing attention in recent years, both as terrestrial indicators of climate change and implications for hazard assessment. High-elevation areas are particularly suitable for these studies, because of the presence of the cryosphere, which is particularly sensitive to climate. In this paper, we analyze 358 slope failures which occurred in the Italian Alps in the period 2000–2016, at an elevation above 1500 m a.s.l. We use a statistical-based method to detect climate anomalies associated with the occurrence of slope failures, with the aim to catch an eventual climate signal in the preparation and/or triggering of the considered case studies. We first analyze the probability values assumed by 25 climate variables on the occasion of a slope-failure occurrence. We then perform a dimensionality reduction procedure and come out with a set of four most significant and representative climate variables, in particular heavy precipitation and short-term high temperature. Our study highlights that slope failures occur in association with one or more climate anomalies in almost 92% of our case studies. One or more temperature anomalies are detected in association with most case studies, in combination or not with precipitation (47% and 38%, respectively). Summer events prevail, and an increasing role of positive temperature anomalies from spring to winter, and with elevation and failure size, emerges. While not providing a final evidence of the role of climate warming on slope instability increase at high elevation in recent years, the results of our study strengthen this hypothesis, calling for more extensive and in-depth studies on the subject
Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas
We have experimentally determined the partition coefficients of rare earth elements (REE), HFSE (Ti, Zr, Hf, Nb, Ta) and other trace elements between clinopyroxene and potassic silicate melts at 0.1-200 MPa and 1042-1140°C. The major and trace element contents of clinopyroxene and liquid were determined by electron probe and ion microprobe, respectively. The liquidus clinopyroxenes are extremely rich in Al2O3 (up to 12%) and Fe2O3, which enables us to test suggestions that partition coefficients of HFSE and REE depend on the Al content of the clinopyroxene (e.g., Lundstrom, C.C., Shaw, H.F., Ryerson, F.J., Williams, Q., Gill, J., 1998. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle. Geochim. Cosmochim. Acta 62, 2849-2862.). When compared with previous data for low-alumina clinopyroxene crystallised under similar P-T conditions, the increase in weight partition coefficient Di (= [I]xtl/[I]liq) for all the HFSE and REE is dramatic. For Ti and the REE, partition coefficients increase by about one order of magnitude as Aliv concentration of clinopyroxene increases from 0.02 to 0.5. For Nb, Ta and Zr, the effect is even more pronounced, a two order of magnitude increase being found to correspond to this increase in Aliv. We applied the data to model the fractionation of historic lavas from Vesuvius. Previous work using the major elements (Belkin, H.E., Kilburn, C.R.J., DeVivo, B., 1993. Sampling and major element chemistry of the recent (AD 1631-1944) Vesuvius activity. J. Volcanol. Geotherm. Res. 58, 273-290.) indicates a liquid line of descent from trachybasalt to leucite tephrite dominated by clinopyroxene crystallisation. The REE and HFSE concentrations in the lavas are consistent with 40-50% fractional crystallisation of clinopyroxene (accompanied by minor leucite) between the two magmatic endmembers, with partition coefficients for the REE appropriate for clinopyroxenes containing ≤ 7.5 wt.% A1203. Pyroxenes of the latter composition are frequent phenocrysts in the lavas and previous experimental work (Dolfi, D., Trigila, R., 1988. Chemical relations between clinopyroxenes and coexisting glasses obtained from melting experiments on alkaline basic lavas. Rend. Soc. Ital. Mineral. Petrol. 43, 1101-1110; Trigila, R., De Benedetti, A.A., 1993. Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratio analysis and experimental phase equilibria. J. Volcanol. Geotherm. Res. 58, 315-343.) implies that they precipitate under very low pressure low water activity conditions, i.e. within the magma chamber at < 200 MPa. © 2001 Elsevier Science B.V. All Rights reserved
- …