6 research outputs found

    Hysteresis Current Control of the Single-Phase Voltage Source Inverter Using eMEGAsim Real-Time Simulator

    No full text
    The paper presents the hysteresis current control of the voltage source inverter. The eMEGAsim real-time simulator is developed by OPAL-RT. Real-time simulation is used in many cases because it allows the behavior of the industrial processes operation to be determined. Two research directions are developed in this case, Rapid Control Prototyping and Hardware-In-the-Loop. Using eMEGAsim simulator allows implementing the command and control strategy of a single-phase voltage source inverter. At this stage, the real-time behavior of operation is monitored, because the voltage source inverter will be the part of a single-phase shunt active filter. In order to command and control the voltage source inverter, the current and voltage signals are acquired, since these signals are necessary to estimate reference signal. Extension of the Instantaneous Reactive Power Theorem is used because this theorem is suitable for single-phase active filter control. To test the real-time command and control strategy implemented, it was used a low power single-phase voltage source inverter (full bridge)

    Strategies for optimizing the opening of the outlet air circuit's nozzle to improve the efficiency of the PEMFC generator

    No full text
    The aim of this study is the optimal dimensioning of the air circuit's outlet nozzle in relation with the load duration curve, for a given PEMFC generator, in order to maximize the PEMFC efficiency and to increase the net outlet power. The steady state PEMFC operation has been taken into account. The model of the PEMFC system used in the work is based on a moving least squares technique. A centrifugal compressor has been taken into account, and the operating line of the compressor has been evaluated for an optimal fixed opening of the outlet nozzle. A multi-level optimization procedure has been implemented to solve the optimization problem. The developed algorithm is useful to design an optimum air subsystem, reducing the number of the control variables and the consequences of the dynamic behavior of a controlled electric adjustable valve on the PEMFC performance. The results of the work can contribute to the improvement of the PEMFC generator reliability and of its cost/performance ratio.Fuel cell Nozzle Multi-level optimization Efficiency

    Surrogate modelling of compressor characteristics for fuel-cell applications

    No full text
    The compressor is an important auxiliary for fuel-cell (FC) operation. Growing fuel-cell system efficiency involves an optimal fuel cell energy management and the air management is a key issue. Thus, a good modelling for static and dynamic operation of all components of the FC system, and in particular of the compressor, is required. The difficulties, due to a lack of information about the performance of compressors, demand predictive and modern approximation methods to be used for compressor modelling. To overcome these issues, the paper proposes and presents a moving least squares (MLS) algorithm for obtaining a surrogate model of the centrifugal compressor. The experimental data provided by manufacturers are used for this task. The results can be used for the development of an off-design model or the overall dynamic simulation of the behaviour of a FC system.Compressor Characteristic map Moving least-squares Surrogate model Fuel-cell
    corecore