1,714 research outputs found

    Dynamics of Fractal Solids

    Full text link
    We describe the fractal solid by a special continuous medium model. We propose to describe the fractal solid by a fractional continuous model, where all characteristics and fields are defined everywhere in the volume but they follow some generalized equations which are derived by using integrals of fractional order. The order of fractional integral can be equal to the fractal mass dimension of the solid. Fractional integrals are considered as an approximation of integrals on fractals. We suggest the approach to compute the moments of inertia for fractal solids. The dynamics of fractal solids are described by the usual Euler's equations. The possible experimental test of the continuous medium model for fractal solids is considered.Comment: 12 pages, LaTe

    Fractional Generalization of Gradient Systems

    Full text link
    We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems.Comment: 11 pages, LaTe

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Transport Equations from Liouville Equations for Fractional Systems

    Full text link
    We consider dynamical systems that are described by fractional power of coordinates and momenta. The fractional powers can be considered as a convenient way to describe systems in the fractional dimension space. For the usual space the fractional systems are non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoliubov equations for fractional systems. Fractional generalization of average values and reduced distribution functions are defined. Hydrodynamic equations for fractional systems are derived from the generalized transport equation.Comment: 11 pages, LaTe

    Psi-Series Solution of Fractional Ginzburg-Landau Equation

    Full text link
    One-dimensional Ginzburg-Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order alphaalpha with polynomial nonlinearity of order ss have the noninteger power-like behavior of order α/(1−s)\alpha/(1-s) near the singularity.Comment: LaTeX, 19 pages, 2 figure

    Nonholonomic Constraints with Fractional Derivatives

    Full text link
    We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle.Comment: 18 page

    Universal Electromagnetic Waves in Dielectric

    Full text link
    The dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency ranges, a fractional power-law frequency dependence that is called the "universal" response. The electromagnetic fields in such dielectric media are described by fractional differential equations with time derivatives of non-integer order. An exact solution of the fractional equations for a magnetic field is derived. The electromagnetic fields in the dielectric materials demonstrate fractional damping. The typical features of "universal" electromagnetic waves in dielectric are common to a wide class of materials, regardless of the type of physical structure, chemical composition, or of the nature of the polarizing species, whether dipoles, electrons or ions.Comment: 19 pages, LaTe
    • …
    corecore