73 research outputs found
The Density of Titanium(IV) Oxide Liquid
The density of TiO2 liquid in equilibrium with air has been measured at 1875° to 1925°C using an Ir double bob Archimedean method. The melt density data have been combined with data extrapolated from the CaSiO3─TiO2 join at 1600°C. A combined fit to these density data yields the following description of the density of liquid TiO2: ρ= 3.7611 - 0.00028T(°C), in the temperature range of 1600° to 1925°C. This expansivity value is consistent with those obtained on TiO2-rich melts using a Pt-based system at lower temperature and with multicomponent oxide data. The similarity between the volume of liquid TiO2 and that of crystalline rutile implies a dominantly octahedral coordination of Ti in the liquid state
Development of Coatings for Tantalum Alloy Nozzle Vanes
A group of silicide coatings developed for the T222 tantalum-base alloy have afforded over 600 hours of protection at 1600 and 2400 F during cyclic exposure in air. These coatings were applied in two steps. A modifier alloy was applied by slurry techniques and was sintered in vacuum prior to siliciding by pack cementation in argon. Application of the modifier alloy by pack cementation was found to be much less effective. The addition of titanium and vanadium to molybdenum and tungsten yielded beneficial modifier alloys, whereas the addition of chromium showed no improvement. After siliciding, the 15Ti- 35W-15V-35Mo modifier alloy exhibited the best performance; one sample survived 1064 hours of oxidation at 2400 F. This same coating was the only coating to reproducibly provide 600 hours of protection at both 1600 and 2400 F; in the second and third of three experiments, involving oxidation of three to five specimens at each temperature in each experiment, no failures were observed in 600 hours of testing. The slurry coatings were also shown to protect the Cb752 and D43 columbium-base alloys
The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans
Reinstatement of dynamic memories requires the replay of neural patterns that unfold over
time in a similar manner as during perception. However, little is known about the mechanisms
that guide such a temporally structured replay in humans, because previous studies
used either unsuitable methods or paradigms to address this question. Here, we overcome
these limitations by developing a new analysis method to detect the replay of temporal patterns
in a paradigm that requires participants to mentally replay short sound or video clips.
We show that memory reinstatement is accompanied by a decrease of low-frequency (8
Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay
effects were evident in the visual as well as in the auditory domain and were localized to
sensory-specific regions. These results suggest low-frequency phase to be a domain-general
mechanism that orchestrates dynamic memory replay in humans
Speed of time-compressed forward replay flexibly changes in human episodic memory
Remembering information from continuous past episodes is a complex task. On the one hand, we must be able to recall events in a highly accurate way that often includes exact timing; on the other hand, we can ignore irrelevant details and skip to events of interest. We here track continuous episodes, consisting of different sub-events, as they are recalled from memory. In behavioral and MEG data, we show that memory replay is temporally compressed and proceeds in a forward direction. Neural replay is characterized by the reinstatement of temporal patterns from encoding. These fragments of activity reappear on a compressed timescale. Herein, the replay of sub-events takes longer than the transition from one sub-event to another. This identifies episodic memory replay as a dynamic process in which participants replay fragments of fine-grained temporal patterns and are able to skip flexibly across sub-events
- …