3,551 research outputs found
Lattice-form dependent orbital shape and charge disproportionation in charge- and orbital-ordered manganites
The orbital shapes and charge disproportionations at nominal Mn and
Mn sites for the charge- and orbital-ordered phases have been studied on
half-doped manganites Pr(SrCa)MnO and
EuCaMnO with double-layer and single-layer Mn-O networks,
respectively, by means of x-ray structural analyses, in comparison with
PrCaMnO with the pseudo cubic network. In a single-layer
EuCaMnO system, the ()/()-type orbital
shape is observed, while the ()/()-type orbital shape in a
pseudo cubic PrCaMnO system. In a double-layer
Pr(SrCa)MnO system, the orbital shape is found to
undergo a large change upon thermally induced rotation of orbital stripe.
Furthermore, clear charge disproportionation is observed for the pseudo cubic
and double-layer systems, while not in the single-layer system. These results
indicate that the orbital shape and charge disproportionation are sensitive to
the dimension of Mn-O network.Comment: 12 page, 5 figures, 11 table
JHK Spectra of the z=2.39 Radio Galaxy 53W002
We present low-resolution, near-IR JHK spectra of the weak z=2.39 radio
galaxy 53W002, obtained with the OH-airglow Suppressor spectrograph (OHS) and
Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru
Telescope. They cover rest-frame wavelengths of 3400-7200 A, and the emission
lines of [O II]3727, Hb, [O III]4959, 5007, Ha, [N II]6548, 6583 and [S
II]6716, 6731 were detected. Using the Ha/Hb line ratio, we find an extinction
of E(B-V)=0.14. The emission-line ratios are reproduced by a cloud of electron
density n_e=1x10^{3-4}(/cm3) with solar metallicity, ionized by an alpha=-0.7
power-law continuum with ionizing parameter U=1x10^-3. In addition to these
emission lines, we make the first spectroscopic confirmation of the Balmer
discontinuity in a high-z radio galaxy. Together with rest-frame UV photometry
from the literature, we show that at least 1/3 of the present stellar mass was
formed in the current starburst. The stellar mass was estimated to be
(1-1.4)x10^11 M_sol by one-component model fitting, which is smaller than that
of typical z~1 B2/6C radio galaxies. We suggest that 53W002 is currently
assembling a large part of its stellar mass through merger events with the
surrounding sub-galactic clumps, some of which can be identified with the Lya
emitters detected in narrow-band imaging. After a few such events over the next
few Gyr, 53W002 will evolve into a massive elliptical galaxy.Comment: 10 pages, including 11 figures. Accepted for publication in
PASJ(2001). Revised 5/15/200
Dimensionality dependence of optical nonlinearity and relaxation dynamics in cuprates
Femtosecond pump-probe measurements find pronounced dimensionality dependence
of the optical nonlinearity in cuprates. Although the coherent two-photon
absorption (TPA) and linear absorption bands nearly overlap in both quasi-one
and two-dimensional (1D and 2D) cuprates, the TPA coefficient is one order of
magnitude smaller in 2D than in 1D. Furthermore, picosecond recovery of optical
transparency is observed in 1D cuprates, while the recovery in 2D involves
relaxation channels with a time scales of tens of picoseconds. The experimental
results are interpreted within the two-band extended Hubbard model.Comment: 10 pages, 4 figure
Infrared Imaging of the Gravitational Lens PG 1115+080 with the Subaru Telescope
We present high spatial resolution images of the gravitational-lens system PG
1115+080 taken with the near-infrared camera (CISCO) on the Subaru telescope.
The FWHM of the combined image is in the -band, yielding spatial
resolution of after a deconvolution procedure. This is a first
detection of an extended emission adjacent to the A1/A2 components, indicating
the presence of a fairly bright emission region with a characteristic angular
radius of 5 mas (40 pc). The near-infrared image of the Einstein ring
was extracted in both the and bands. The color is found to be
significantly redder than that of a synthetic model galaxy with an age of 3
Gyr, the age of the universe at the quasar redshift.Comment: 11 pages, 6 figures. Accepted for publication in PASJ(2000
Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs
ObjectivesPatients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.MethodsWe used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400x100-pixel ROI was automatically extracted and divided into four 100x100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.ResultsMost ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.ConclusionsPatients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care
Determination of Pinning Parameters in Flux Creep-Flow Model for E-J characteristics of High Temperature Superconductors by using Differential Evolution
The pinning parameters such as strength of pinning force, temperature dependence of pinning force and so on using in flux creep-flow model to explain electric field vs current density (E-J) characteristics were determined by Differential Evolution (DE). DE is one of the methods in Evolutionary Computation (EC) to find an optimization of a problem. First, a model data of E-J characteristics in which the pinning parameters were given was prepared, and it was confirmed that DE can find the given pinning parameters from the model data. Then, DE and mesh method were used to determine the pinning parameters in experimental E-J characteristics of GdBa2CuO7-δ high temperature superconductor. In mesh method, the all combinations of pinning parameters with constant interval for each parameter are calculated, and best set of pinning parameters is selected. It was found that DE shows better performance than mesh method in terms of calculation time and accuracy for determining pinning parameters
[OII]3727 Emission from the Companion to the Quasar BR 1202-0725 at z=4.7
Results of a narrow-band imaging for the redshifted [OII]3727 emission around
a quasar at z=4.7 obtained with the Subaru telescope and CISCO (a Cassegrain
near infrared camera) are presented. A significant emission line is detected in
the narrow-band H_2 (v=1-0 S(1)) filter at a location 2.4" northwest from the
quasar, where the presence of a companion has been reported in Lyman alpha
emission and the rest-frame UV continuum. We identify this line as [OII]3727
emission and confirm that the source really is a companion at z=4.7. The
[OII]3727 flux from the companion is estimated to be 2.5 x 10^{-17} erg s^{-1}
cm^{-2}. If the companion is a star forming object, the inferred star formation
rate is as high as 45-230 M_{solar} yr^{-1} even without assuming the
extinction correction. This value is higher than those derived from the Lyman
alpha emission or from the UV continuum. Thus, provided that the difference is
caused by dust extinction, the extinction corrected star formation rate is
calculated to be 45 to 2300 M_{solar} yr^{-1} depending on the assuming
extinction curves.Comment: 15 pages including 3 figures. Accepted for publication in PAS
- …