698 research outputs found

    Adiabatic Gate Teleportation

    Full text link
    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. Notably this construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.Comment: 4 pages, 1 figure, with additional 3 pages and 2 figures in an appendix. v2 Refs added. Video abstract available at http://www.quantiki.org/video_abstracts/0905090

    The Stability of Quantum Concatenated Code Hamiltonians

    Full text link
    Protecting quantum information from the detrimental effects of decoherence and lack of precise quantum control is a central challenge that must be overcome if a large robust quantum computer is to be constructed. The traditional approach to achieving this is via active quantum error correction using fault-tolerant techniques. An alternative to this approach is to engineer strongly interacting many-body quantum systems that enact the quantum error correction via the natural dynamics of these systems. Here we present a method for achieving this based on the concept of concatenated quantum error correcting codes. We define a class of Hamiltonians whose ground states are concatenated quantum codes and whose energy landscape naturally causes quantum error correction. We analyze these Hamiltonians for robustness and suggest methods for implementing these highly unnatural Hamiltonians.Comment: 18 pages, small corrections and clarification

    Trans-Planckian Tail in a Theory with a Cutoff

    Get PDF
    Trans-planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static observers. Freely falling observers see empty space outside the horizon, but are "heated" as they cross the horizon.Comment: 17 pages, RevTe

    The hidden horizon and black hole unitarity

    Full text link
    We motivate through a detailed analysis of the Hawking radiation in a Schwarzschild background a scheme in accordance with quantum unitarity. In this scheme the semi-classical approximation of the unitary quantum - horizonless - black hole S-matrix leads to the conventional description of the Hawking radiation from a classical black hole endowed with an event horizon. Unitarity is borne out by the detailed exclusive S-matrix amplitudes. There, the fixing of generic out-states, in addition to the in-state, yields in asymptotic Minkowski space-time saddle-point contributions which are dominated by Planckian metric fluctuations when approaching the Schwarzschild radius. We argue that these prevent the corresponding macroscopic "exclusive backgrounds" to develop an event horizon. However, if no out-state is selected, a distinct saddle-point geometry can be defined, in which Planckian fluctuations are tamed. Such "inclusive background" presents an event horizon and constitutes a coarse-grained average over the aforementioned exclusive ones. The classical event horizon appears as a coarse-grained structure, sustaining the thermodynamic significance of the Bekenstein-Hawking entropy. This is reminiscent of the tentative fuzzball description of extremal black holes: the role of microstates is played here by a complete set of out-states. Although the computations of unitary amplitudes would require a detailed theory of quantum gravity, the proposed scheme itself, which appeals to the metric description of gravity only in the vicinity of stationary points, does not.Comment: 29 pages, 4 figures. Typos corrected. Two footnotes added (footnotes 3 and 5

    Observable Dirac-type singularities in Berry's phase and the monopole

    Get PDF
    The physical reality and observability of 2n\pi Berry phases, as opposed to the usually considered modulo 2\pi topological phases is demonstrated with the help of computer simulation of a model adiabatic evolution whose parameters are varied along a closed loop in the parameter space. Using the analogy of Berry's phase with the Dirac monopole, it is concluded that an interferometer loop taken around a magnetic monopole of strength n/2 yields an observable 2n\pi phase shift, where n is an integer. An experiment to observe the effect is proposed.Comment: 12 pages Latex, 3 postscript figures; submitted to Physical Review Letters 15 September 2000; revised 19 November 200

    Pre- and post-selection, weak values, and contextuality

    Full text link
    By analyzing the concept of contextuality (Bell-Kochen-Specker) in terms of pre-and-post-selection (PPS), it is possible to assign definite values to observables in a new and surprising way. Physical reasons are presented for restrictions on these assignments. When measurements are performed which do not disturb the pre- and post-selection (i.e. weak measurements), then novel experimental aspects of contextuality can be demonstrated including a proof that every PPS-paradox with definite predictions implies contextuality. Certain results of these measurements (eccentric weak values with e.g. negative values outside the spectrum), however, cannot be explained by a "classical-like" hidden variable theory.Comment: Identical content; stream-lined verbal presentatio

    Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects

    Full text link
    We establish systematic consolidation of the Aharonov-Bohm and Aharonov-Casher effects including their scalar counterparts. Their formal correspondences in acquiring topological phases are revealed on the basis of the gauge symmetry in non-simply connected spaces and the adiabatic condition for the state of magnetic dipoles. In addition, investigation of basic two-body interactions between an electric charge and a magnetic dipole clarifies their appropriate relative motions and discloses physical interrelations between the effects. Based on the two-body interaction, we also construct an exact microscopic description of the Aharonov-Bohm effect, where all the elements are treated on equal footing, i.e., magnetic dipoles are described quantum-mechanically and electromagnetic fields are quantized. This microscopic analysis not only confirms the conventional (semiclassical) results and the topological nature but also allows one to explore the fluctuation effects due to the precession of the magnetic dipoles with the adiabatic condition relaxed

    Topological phase due to electric dipole moment and magnetic monopole interaction

    Full text link
    We show that there is an anologous Aharonov-Casher effect on a neutral particle with electric dipole moment interacting with a magnetic filed produced by magnetic monopoles.Comment: 8 page

    Weak Values with Decoherence

    Full text link
    The weak value of an observable is experimentally accessible by weak measurements as theoretically analyzed by Aharonov et al. and recently experimentally demonstrated. We introduce a weak operator associated with the weak values and give a general framework of quantum operations to the W operator in parallel with the Kraus representation of the completely positive map for the density operator. The decoherence effect is also investigated in terms of the weak measurement by a shift of a probe wave function of continuous variable. As an application, we demonstrate how the geometric phase is affected by the bit flip noise.Comment: 17 pages, 3 figure

    Following microscopic motion in a two dimensional glass-forming binary fluid

    Full text link
    The dynamics of a binary mixture of large and small discs are studied at temperatures approaching the glass transition using an analysis based on the topology of the Voronoi polygon surrounding each atom. At higher temperatures we find that dynamics is dominated by fluid-like motion that involves particles entering and exiting the nearest-neighbour shells of nearby particles. As the temperature is lowered, the rate of topological moves decreases and motion becomes localised to regions of mixed pentagons and heptagons. In addition we find that in the low temperature state particles may translate significant distances without undergoing changes in their nearest neig hbour shell. These results have implications for dynamical heterogeneities in glass forming liquids.Comment: 12 pages, 7 figure
    corecore