1,099 research outputs found
Quantization of Prior Probabilities for Hypothesis Testing
Bayesian hypothesis testing is investigated when the prior probabilities of
the hypotheses, taken as a random vector, are quantized. Nearest neighbor and
centroid conditions are derived using mean Bayes risk error as a distortion
measure for quantization. A high-resolution approximation to the
distortion-rate function is also obtained. Human decision making in segregated
populations is studied assuming Bayesian hypothesis testing with quantized
priors
Strongly Secure Communications Over the Two-Way Wiretap Channel
We consider the problem of secure communications over the two-way wiretap
channel under a strong secrecy criterion. We improve existing results by
developing an achievable region based on strategies that exploit both the
interference at the eavesdropper's terminal and cooperation between legitimate
users. We leverage the notion of channel resolvability for the multiple-access
channel to analyze cooperative jamming and we show that the artificial noise
created by cooperative jamming induces a source of common randomness that can
be used for secret-key agreement. We illustrate the gain provided by this
coding technique in the case of the Gaussian two-way wiretap channel, and we
show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information
Forensics and Security, Special Issue: "Using the Physical Layer for Securing
the Next Generation of Communication Systems
Separation of Reliability and Secrecy in Rate-Limited Secret-Key Generation
For a discrete or a continuous source model, we study the problem of
secret-key generation with one round of rate-limited public communication
between two legitimate users. Although we do not provide new bounds on the
wiretap secret-key (WSK) capacity for the discrete source model, we use an
alternative achievability scheme that may be useful for practical applications.
As a side result, we conveniently extend known bounds to the case of a
continuous source model. Specifically, we consider a sequential key-generation
strategy, that implements a rate-limited reconciliation step to handle
reliability, followed by a privacy amplification step performed with extractors
to handle secrecy. We prove that such a sequential strategy achieves the best
known bounds for the rate-limited WSK capacity (under the assumption of
degraded sources in the case of two-way communication). However, we show that,
unlike the case of rate-unlimited public communication, achieving the
reconciliation capacity in a sequential strategy does not necessarily lead to
achieving the best known bounds for the WSK capacity. Consequently, reliability
and secrecy can be treated successively but not independently, thereby
exhibiting a limitation of sequential strategies for rate-limited public
communication. Nevertheless, we provide scenarios for which reliability and
secrecy can be treated successively and independently, such as the two-way
rate-limited SK capacity, the one-way rate-limited WSK capacity for degraded
binary symmetric sources, and the one-way rate-limited WSK capacity for
Gaussian degraded sources.Comment: 18 pages, two-column, 9 figures, accepted to IEEE Transactions on
Information Theory; corrected typos; updated references; minor change in
titl
On the Design of Artificial-Noise-Aided Secure Multi-Antenna Transmission in Slow Fading Channels
In this paper, we investigate the design of artificial-noise-aided secure
multi-antenna transmission in slow fading channels. The primary design concerns
include the transmit power allocation and the rate parameters of the wiretap
code. We consider two scenarios with different complexity levels: i) the design
parameters are chosen to be fixed for all transmissions, ii) they are
adaptively adjusted based on the instantaneous channel feedback from the
intended receiver. In both scenarios, we provide explicit design solutions for
achieving the maximal throughput subject to a secrecy constraint, given by a
maximum allowable secrecy outage probability. We then derive accurate
approximations for the maximal throughput in both scenarios in the high
signal-to-noise ratio region, and give new insights into the additional power
cost for achieving a higher security level, whilst maintaining a specified
target throughput. In the end, the throughput gain of adaptive transmission
over non-adaptive transmission is also quantified and analyzed.Comment: to appear in IEEE Transactions on Vehicular Technolog
Robust Spectrum Sharing via Worst Case Approach
This paper considers non-cooperative and fully-distributed power-allocation
for secondary-users (SUs) in spectrum-sharing environments when
normalized-interference to each secondary-user is uncertain. We model each
uncertain parameter by the sum of its nominal (estimated) value and a bounded
additive error in a convex set, and show that the allocated power always
converges to its equilibrium, called robust Nash equilibrium (RNE). In the case
of a bounded and symmetric uncertainty set, we show that the power allocation
problem for each SU is simplified, and can be solved in a distributed manner.
We derive the conditions for RNE's uniqueness and for convergence of the
distributed algorithm; and show that the total throughput (social utility) is
less than that at NE when RNE is unique. We also show that for multiple RNEs,
the the social utility may be higher at a RNE as compared to that at the
corresponding NE, and demonstrate that this is caused by SUs' orthogonal
utilization of bandwidth for increasing the social utility. Simulations confirm
our analysis
Bandit Problems with Side Observations
An extension of the traditional two-armed bandit problem is considered, in
which the decision maker has access to some side information before deciding
which arm to pull. At each time t, before making a selection, the decision
maker is able to observe a random variable X_t that provides some information
on the rewards to be obtained. The focus is on finding uniformly good rules
(that minimize the growth rate of the inferior sampling time) and on
quantifying how much the additional information helps. Various settings are
considered and for each setting, lower bounds on the achievable inferior
sampling time are developed and asymptotically optimal adaptive schemes
achieving these lower bounds are constructed.Comment: 16 pages, 3 figures. To be published in the IEEE Transactions on
Automatic Contro
Long-Distance Quantum Communication with Entangled Photons using Satellites
The use of satellites to distribute entangled photon pairs (and single
photons) provides a unique solution for long-distance quantum communication
networks. This overcomes the principle limitations of Earth-bound technology,
i.e. the narrow range of some 100 km provided by optical fiber and terrestrial
free-space links.Comment: 12 pages, 7 figures; submitted to IEEE Journal of Selected Topics in
Quantum Electronics, special issue on "Quantum Internet Technologies
Performance Analysis of MIMO-MRC in Double-Correlated Rayleigh Environments
We consider multiple-input multiple-output (MIMO) transmit beamforming
systems with maximum ratio combining (MRC) receivers. The operating environment
is Rayleigh-fading with both transmit and receive spatial correlation. We
present exact expressions for the probability density function (p.d.f.) of the
output signal-to-noise ratio (SNR), as well as the system outage probability.
The results are based on explicit closed-form expressions which we derive for
the p.d.f. and c.d.f. of the maximum eigenvalue of double-correlated complex
Wishart matrices. For systems with two antennas at either the transmitter or
the receiver, we also derive exact closed-form expressions for the symbol error
rate (SER). The new expressions are used to prove that MIMO-MRC achieves the
maximum available spatial diversity order, and to demonstrate the effect of
spatial correlation. The analysis is validated through comparison with
Monte-Carlo simulations.Comment: 25 pages. Submitted to the IEEE Transactions on Communication
The contribution of the immune system to parturition
The immune system plays a central role before and during parturition, including the main physiological processes of parturition: uterine contractions and cervical ripening. The immune system comprises white blood cells and their secretions. Polymorphonuclear cells and macrophages invade the cervical tissue and release compounds, such as oxygen radicals and enzymes, which break down the cervical matrix to allow softening and dilatation. During this inflammatory process, white blood cells undergo chemotaxis, adherence to endothelial cells, diapedesis, migration and activation. Factors that regulate white blood cell invasion and secretion include cytokines such as tumour necrosis factor and interleukins. Glucocorticoids, sex hormones and prostaglandins, affect cytokine synthesis. They also modulate the target cells, resulting in altered responses to cytokines. On the other hand, the immune system has profound effects on the hormonal system and prostaglandin synthesis. In animals, nitric oxide has marked effects on uterine quiescence during gestation. At the same time, it plays an important role in regulating the vascular tone of uterine arteries and has anti-adhesive effects on leukocytes. Cytokines are found in amniotic fluid, and in maternal and foetal serum at term and preterm. Several intrauterine cells have been shown to produce these cytoldnes. Since neither white blood cells, cytokines nor nitric oxide seem to be the ultimate intermediate for human parturition, the immune system is an additional but obligatory and underestimated component in the physiology of delivery. Scientists, obstetricians and anaesthesiologists must thus be aware of these processes
- …