109 research outputs found
Taking the next-gen step: Comprehensive antimicrobial resistance detection from Burkholderia pseudomallei
Background: Antimicrobial resistance (AMR) poses a major threat to human health. Whole-genome sequencing holds great potential for AMR identification; however, there remain major gaps in accurately and comprehensively detecting AMR across the spectrum of AMR-conferring determinants and pathogens.
Methods: Using 16 wild-type Burkholderia pseudomallei and 25 with acquired AMR, we first assessed the performance of existing AMR software (ARIBA, CARD, ResFinder, and AMRFinderPlus) for detecting clinically relevant AMR in this pathogen. B. pseudomallei was chosen due to limited treatment options, high fatality rate, and AMR caused exclusively by chromosomal mutation (i.e. single-nucleotide polymorphisms [SNPs], insertions-deletions [indels], copy-number variations [CNVs], inversions, and functional gene loss). Due to poor performance with existing tools, we developed ARDaP (Antimicrobial Resistance Detection and Prediction) to identify the spectrum of AMR-conferring determinants in B. pseudomallei.
Findings: CARD, ResFinder, and AMRFinderPlus failed to identify any clinically-relevant AMR in B. pseudomallei; ARIBA identified AMR encoded by SNPs and indels that were manually added to its database. However, none of these tools identified CNV, inversion, or gene loss determinants, and ARIBA could not differentiate AMR determinants from natural genetic variation. In contrast, ARDaP accurately detected all SNP, indel, CNV, inversion, and gene loss AMR determinants described in B. pseudomallei (n≈50). Additionally, ARDaP accurately predicted three previously undescribed determinants. In mixed strain data, ARDaP identified AMR to as low as ~5% allelic frequency.
Interpretation: Existing AMR software packages are inadequate for chromosomal AMR detection due to an inability to detect resistance conferred by CNVs, inversions, and functional gene loss. ARDaP overcomes these major shortcomings. Further, ARDaP enables AMR prediction from mixed sequence data down to 5% allelic frequency, and can differentiate natural genetic variation from AMR determinants. ARDaP databases can be constructed for any microbial species of interest for comprehensive AMR detection
DOSE REQUIREMENTS AND PLASMA CONCENTRATIONS OF PIPECURONIUM DURING BILATERAL RENAL EXCLUSION AND ORTHOTOPIC LIVER TRANSPLANTATION IN PIGS
We have studied five pigs undergoing bilateral clamping of the renal pedicles, seven pigs undergoing orthotopic liver transplantation and three control animals without surgery in order to examine the roles of the kidney and liver in the plasma clearance of pipecuronium. An i.v. infusion of pipecuronium was controlled to maintain a constant 90-95 % twitch depression throughout the investigation. The right sciatic nerve was stimulated continuously with supra-maximal stimuli at 0.1 Hz and the force of the corresponding evoked isometric muscle contraction was recorded continuously. Control pigs needed an infusion rate of pipecuronium 8-10.7 μg kg−1 min−1. In the renal group, it was necessary to reduce the infusion rate of pipecuronium by about 25% after clamping both renal vascular pedicles (P < 0.05 compared with controls); in pigs undergoing liver transplantation, it was necessary to reduce the rate by approximately 80% after clamping hepatic vessels (P < 0.05 compared with controls and from the period after clamping of renal vessels). After hepatic recirculation, the infusion rate of pipecuronium was increased progressively to a rate which corresponded to 50% of baseline values (P < 0.05 compared with the anhepatic phase and from controls). Plasma concentrations of pipecuronium were comparable in the three animal groups and did not change significantly during the study. These data suggest that the liver plays a more important role than the kidney in the plasma clearance of pipecuronium in pig
Global Scale Dissemination of ST93: A Divergent Staphylococcus aureus Epidemic Lineage That Has Recently Emerged From Remote Northern Australia.
Background: In Australia, community-associated methicillin-resistant Staphylococcus aureus (MRSA) lineage sequence type (ST) 93 has rapidly risen to dominance since being described in the early 1990s. We examined 459 ST93 genome sequences from Australia, New Zealand, Samoa, and Europe to investigate the evolutionary history of ST93, its emergence in Australia and subsequent spread overseas. Results: Comparisons with other S. aureus genomes indicate that ST93 is an early diverging and recombinant lineage, comprising of segments from the ST59/ST121 lineage and from a divergent but currently unsampled Staphylococcal population. However, within extant ST93 strains limited genetic diversity was apparent with the most recent common ancestor dated to 1977 (95% highest posterior density 1973-1981). An epidemic ST93 population arose from a methicillin-susceptible progenitor in remote Northern Australia, which has a proportionally large Indigenous population, with documented overcrowded housing and a high burden of skin infection. Methicillin-resistance was acquired three times in these regions, with a clade harboring a staphylococcal cassette chromosome mec (SCCmec) IVa expanding and spreading to Australia's east coast by 2000. We observed sporadic and non-sustained introductions of ST93-MRSA-IVa to the United Kingdom. In contrast, in New Zealand, ST93-MRSA-IVa was sustainably transmitted with clonal expansion within the Pacific Islander population, who experience similar disadvantages as Australian Indigenous populations. Conclusion: ST93 has a highly recombinant genome including portions derived from an early diverging S. aureus population. Our findings highlight the need to understand host population factors in the emergence and spread of antimicrobial resistant community pathogens
Exploring the evolution and epidemiology of European CC1-MRSA-IV: tracking a multidrug-resistant community-associated meticillin-resistant Staphylococcus aureus clone
This study investigated the evolution and epidemiology of the community-associated and multidrug-resistant Staphylococcus aureus clone European CC1-MRSA-IV. Whole-genome sequences were obtained for 194 European CC1-MRSA-IV isolates (189 of human and 5 of animal origin) from 12 countries, and 10 meticillin-susceptible precursors (from North-Eastern Romania; all of human origin) of the clone. Phylogenetic analysis was performed using a maximum-likelihood approach, a time-measured phylogeny was reconstructed using Bayesian analysis, and in silico microarray genotyping was performed to identify resistance, virulence-associated and SCCmec (staphylococcal cassette chromosome mec) genes. Isolates were typically sequence type 1 (190/204) and spa type t127 (183/204). Bayesian analysis indicated that European CC1-MRSA-IV emerged in approximately 1995 before undergoing rapid expansion in the late 1990s and 2000s, while spreading throughout Europe and into the Middle East. Phylogenetic analysis revealed an unstructured meticillin-resistant S. aureus (MRSA) population, lacking significant geographical or temporal clusters. The MRSA were genotypically multidrug-resistant, consistently encoded seh, and intermittently (34/194) encoded an undisrupted hlb gene with concomitant absence of the lysogenic phage-encoded genes sak and scn. All MRSA also harboured a characteristic ~5350 nt insertion in SCCmec adjacent to orfX. Detailed demographic data from Denmark showed that there, the clone is typically (25/35) found in the community, and often (10/35) among individuals with links to South-Eastern Europe. This study elucidated the evolution and epidemiology of European CC1-MRSA-IV, which emerged from a meticillin-susceptible lineage prevalent in North-Eastern Romania before disseminating rapidly throughout Europe
Intergenerational Community-Based Research and Creative Practice: Promoting Environmental Sustainability in Jinja, Uganda
This article critically reflects on the methodological approach developed for a recent project based in Jinja, Uganda, that sought to generate new forms of environmental knowledge and action utilizing diverse forms of creative intergenerational practice embedded within a broader framework of community-based participatory research. This approach provided new opportunities for intergenerational dialogue in Jinja, generated increased civic environmental engagement, and resulted in a participant-led campaign to share knowledge regarding sustainable biomass consumption. We term this approach intergenerational community-based research and creative practice. We discuss the advantages of this model while also reflecting throughout on the challenges of the approach
Fetal programming of neuropsychiatric disorders by maternal pregnancy depression: a systematic mini review
BACKGROUND: Maternal depression complicates a large proportion of pregnancies. Current evidence shows numerous harmful effects on the offspring. Reviews, which include depression, concluded that stress has harmful effects on the offspring's outcomes neuro-cognitive development, temperament traits, and mental disorders. OBJECTIVE: This mini review of recent studies, sought to narrow the scope of exposure and identify studies specifically assessing prenatal depression and offspring neuropsychiatric outcomes. STUDY ELIGIBILITY CRITERIA: The review included longitudinal, cohort, cross-sectional, clinical, quasi-experimental, epidemiological, or intervention study designs published in English from 2014 to 2018. PARTICIPANTS: Study populations included mother-child dyads, mother-father-child triads, mother-alternative caregiver-child triads, and family studies utilizing sibling comparisons. METHODS: We searched PubMED and Web of Science. Study inclusion and data extraction were based on standardized templates. The quality of evidence was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS: Thirteen studies examining neuropsychiatric outcomes were included. We judged the evidence to be moderate to high quality. CONCLUSIONS: Our review supports that maternal prenatal depression is associated with neuropsychiatric adversities in children.Peer reviewe
Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments
The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available
Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent
Background Deoxyribonucleic acid (DNA) vaccines are used for experimental
immunotherapy of equine melanoma. The injection of complexed linear DNA
encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a
clinical study including 27 grey horses. To date, the detailed mechanism of
the anti-tumour effect of this treatment is unknown. Results In the present
study, the clinical and cellular responses of 24 healthy horses were monitored
over 72 h after simultaneous intradermal and intramuscular application of
equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative
substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of
CG). Although the strongest effect was observed in horses treated with
expressing DNA, horses in all groups treated with DNA showed systemic
responses. In these horses treated with DNA, rectal temperatures were elevated
after treatment and serum amyloid A increased. Total leukocyte and neutrophil
counts increased, while lymphocyte numbers decreased. The secretion of tumour
necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral
mononuclear blood cells ex vivo increased after treatments with DNA, while
IL-10 secretion decreased. Horses treated with DNA had significantly higher
myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression
in skin samples at the intradermal injection sites compared to horses treated
with transfection reagent only, suggesting an inflammatory response to DNA
treatment. In horses treated with expressing DNA, however, local CXCL-10
expression was highest and immunohistochemistry revealed more intradermal
IL-12-positive cells when compared to the other treatment groups. In contrast
to non-grey horses, grey horses showed fewer effects of DNA treatments on
blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the
dermis. Conclusion Treatment with complexed linear DNA constructs induced an
inflammatory response independent of the coding sequence and of CG motif
content. Expressing IL-12/IL-18 DNA locally induces expression of the
downstream mediator CXCL-10. The grey horses included appeared to display an
attenuated immune response to DNA treatment, although grey horses bearing
melanoma responded to this treatment with moderate tumour remission in a
preceding study. Whether the different immunological reactivity compared to
other horses may contributes to the melanoma susceptibility of grey horses
remains to be elucidated
Ethiopian indigenous goats offer insights into past and recent demographic dynamics and localadaptation in sub-Saharan African goats
Abstract Knowledge on how adaptive evolution and human socio‐cultural and economic interests shaped livestock genomes particularly in sub‐Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio‐climatic conditions. Using 52K genome‐wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome‐wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi‐Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub‐Saharan Africa indigenous goats
Global and Zonal-Mean Hydrological Response to Early Eocene Warmth
Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet-gets-wetter, dry-gets-drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid- (30°–60°N/S) and high-latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns
- …