2,265 research outputs found
Floquet Analysis of Atom Optics Tunneling Experiments
Dynamical tunneling has been observed in atom optics experiments by two
groups. We show that the experimental results are extremely well described by
time-periodic Hamiltonians with momentum quantized in units of the atomic
recoil. The observed tunneling has a well defined period when only two Floquet
states dominate the dynamics. Beat frequencies are observed when three Floquet
states dominate. We find frequencies which match those observed in both
experiments. The dynamical origin of the dominant Floquet states is identified.Comment: Accepted in Physical Review
On the correction of anomalous phase oscillation in entanglement witnesses using quantum neural networks
Entanglement of a quantum system depends upon relative phase in complicated
ways, which no single measurement can reflect. Because of this, entanglement
witnesses are necessarily limited in applicability and/or utility. We propose
here a solution to the problem using quantum neural networks. A quantum system
contains the information of its entanglement; thus, if we are clever, we can
extract that information efficiently. As proof of concept, we show how this can
be done for the case of pure states of a two-qubit system, using an
entanglement indicator corrected for the anomalous phase oscillation. Both the
entanglement indicator and the phase correction are calculated by the quantum
system itself acting as a neural network
Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging
We show that well-separated quantum superposition states, measurements of
strongly nonlinear observables, and quantum dynamics driven by anomalous
diffusion can all be achieved for single atoms or molecules by imaging
spontaneous photons that they emit via resonance florescence. To generate
anomalous diffusion we introduce continuous measurements driven by L\'evy
processes, and prove a number of results regarding their properties. In
particular we present strong evidence that the only stable L\'evy density that
can realize a strictly continuous measurement is the Gaussian.Comment: revtex4-1, 17 pages, 7 eps figure
Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering
The measurement of the coherent-population-trapping (CPT) resonances in
uncoated Rb vacuum cells has shown that the shape of the resonances is
different in different cells. In some cells the resonance has a complex shape -
a narrow Lorentzian structure, which is not power broadened, superimposed on
the power broadened CPT resonance. The results of the performed investigations
on the fluorescence angular distribution are in agreement with the assumption
that the narrow structure is a result of atom interaction with Rayleigh
scattering light. The results are interesting for indication of the vacuum
cleanness of the cells and building of magnetooptical sensors
Fractal templates in the escape dynamics of trapped ultracold atoms
We consider the dynamic escape of a small packet of ultracold atoms launched
from within an optical dipole trap. Based on a theoretical analysis of the
underlying nonlinear dynamics, we predict that fractal behavior can be seen in
the escape data. This data would be collected by measuring the time-dependent
escape rate for packets launched over a range of angles. This fractal pattern
is particularly well resolved below the Bose-Einstein transition temperature--a
direct result of the extreme phase space localization of the condensate. We
predict that several self-similar layers of this novel fractal should be
measurable and we explain how this fractal pattern can be predicted and
analyzed with recently developed techniques in symbolic dynamics.Comment: 11 pages with 5 figure
The structure of EAS at E 0.1 EeV
The ratio of extensive air showers (EAS) total shower energy in the electromagnetic channel (E em) to the size of the shower at maximum development (N max) from a direct measurement of shower longitudinal development using the air fluorescence technique was calculated. The values are not inconsistent with values based upon track length integrals of the Gaisser-Hillas formula for shower development or the known relation between shower energy and size at maximum for pure electromagnetic cascades. Using Linsley's estimates for undetected shower energy based on an analysis of a wide variety of cosmic ray data, the following relation for total shower energy E vs N max is obtained. The Gaisser Hillas implied undetected shower energy fractions
Exposure to atmospheric radon.
We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure
- …