339 research outputs found
Learning to detect an oddball target with observations from an exponential family
The problem of detecting an odd arm from a set of K arms of a multi-armed
bandit, with fixed confidence, is studied in a sequential decision-making
scenario. Each arm's signal follows a distribution from a vector exponential
family. All arms have the same parameters except the odd arm. The actual
parameters of the odd and non-odd arms are unknown to the decision maker.
Further, the decision maker incurs a cost for switching from one arm to
another. This is a sequential decision making problem where the decision maker
gets only a limited view of the true state of nature at each stage, but can
control his view by choosing the arm to observe at each stage. Of interest are
policies that satisfy a given constraint on the probability of false detection.
An information-theoretic lower bound on the total cost (expected time for a
reliable decision plus total switching cost) is first identified, and a
variation on a sequential policy based on the generalised likelihood ratio
statistic is then studied. Thanks to the vector exponential family assumption,
the signal processing in this policy at each stage turns out to be very simple,
in that the associated conjugate prior enables easy updates of the posterior
distribution of the model parameters. The policy, with a suitable threshold, is
shown to satisfy the given constraint on the probability of false detection.
Further, the proposed policy is asymptotically optimal in terms of the total
cost among all policies that satisfy the constraint on the probability of false
detection
Outage Probability of Multiple-Input Single-Output (MISO) Systems with Delayed Feedback
We investigate the effect of feedback delay on the outage probability of
multiple-input single-output (MISO) fading channels. Channel state information
at the transmitter (CSIT) is a delayed version of the channel state information
available at the receiver (CSIR). We consider two cases of CSIR: (a) perfect
CSIR and (b) CSI estimated at the receiver using training symbols. With perfect
CSIR, under a short-term power constraint, we determine: (a) the outage
probability for beamforming with imperfect CSIT (BF-IC) analytically, and (b)
the optimal spatial power allocation (OSPA) scheme that minimizes outage
numerically. Results show that, for delayed CSIT, BF-IC is close to optimal for
low SNR and uniform spatial power allocation (USPA) is close to optimal at high
SNR. Similarly, under a long-term power constraint, we show that BF-IC is close
to optimal for low SNR and USPA is close to optimal at high SNR. With imperfect
CSIR, we obtain an upper bound on the outage probability with USPA and BF-IC.
Results show that the loss in performance due to imperfection in CSIR is not
significant, if the training power is chosen appropriately.Comment: Submitted to IEEE Transactions on Communications Jan 2007, Revised
Jun 2007, Revised Nov 200
Sequential Multi-hypothesis Testing in Multi-armed Bandit Problems:An Approach for Asymptotic Optimality
We consider a multi-hypothesis testing problem involving a K-armed bandit.
Each arm's signal follows a distribution from a vector exponential family. The
actual parameters of the arms are unknown to the decision maker. The decision
maker incurs a delay cost for delay until a decision and a switching cost
whenever he switches from one arm to another. His goal is to minimise the
overall cost until a decision is reached on the true hypothesis. Of interest
are policies that satisfy a given constraint on the probability of false
detection. This is a sequential decision making problem where the decision
maker gets only a limited view of the true state of nature at each stage, but
can control his view by choosing the arm to observe at each stage. An
information-theoretic lower bound on the total cost (expected time for a
reliable decision plus total switching cost) is first identified, and a
variation on a sequential policy based on the generalised likelihood ratio
statistic is then studied. Due to the vector exponential family assumption, the
signal processing at each stage is simple; the associated conjugate prior
distribution on the unknown model parameters enables easy updates of the
posterior distribution. The proposed policy, with a suitable threshold for
stopping, is shown to satisfy the given constraint on the probability of false
detection. Under a continuous selection assumption, the policy is also shown to
be asymptotically optimal in terms of the total cost among all policies that
satisfy the constraint on the probability of false detection
Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop
Nitrogen fixing cyanobacteria are the predominant flora in waterlogged paddy fields which contribute significantly towards nitrogen budgeting in these ecosystems. Their establishment and role in plant growth promotion and soil microbial activity is poorly known. Under greenhouse conditions, pots were inoculated with one of a set of twenty cyanobacterial strains isolated from the rhizosphere of diverse rice and wheat varieties. Several strains established in the soil and persisted up to the harvest stage in soil and roots, significantly enhancing soil microbial biomass carbon, available nitrogen, and related soil microbiological parameters, and increased grain yields and grain weight. This can help in selecting promising strains for developing carrier-based inoculants to promote the growth of crop and soil microflora, leading to enhanced soil fertility and crop yields
Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma)
<p>Abstract</p> <p>Background</p> <p>Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T<sub>4</sub>). We induced metamorphosis in juvenile Mexican axolotls (<it>Ambystoma mexicanum</it>) using 5 and 50 nM T<sub>4</sub>, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances.</p> <p>Results</p> <p>Individuals reared in the higher T<sub>4 </sub>concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T<sub>4 </sub>concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T<sub>4 </sub>treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T<sub>4 </sub>treatments, respectively.</p> <p>Conclusion</p> <p>We found that T<sub>4 </sub>concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T<sub>4</sub>. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.</p
Prospecting for alternate sources of shikimic acid, a precursor of Tamiflu, a bird-flu drug
Shikimic acid, more commonly known by its anionic form, shikimate, is an important intermediate compound of the
‘shikimate pathway’ in plants and microorganisms1. It is the principal precursor for the synthesis of aromatic amino acids,phenylalanine, tryptophan and tyrosine and other compounds such as alkaloids, phenolics and phenyl propanoids2. It is used extensively as a chiral building
block for the synthesis of a number of compounds in both pharmaceutical and cosmetic industries3. In the recent past, the focus on shikimic acid has increased since it is the key precursor for the synthesis of Tamiflu, the only drug against avian flu caused by the H5N1 virus4,5.
Shikimic acid is converted to a diethyl ketal intermediate, which is then reduced in two steps to an epoxide that is finally transformed to Tamiflu6
Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (\u3ci\u3eAmbystoma\u3c/i\u3e)
Background
Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances.
Results
Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively.
Conclusion
We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis
- …