108 research outputs found

    Learning Opposites with Evolving Rules

    Full text link
    The idea of opposition-based learning was introduced 10 years ago. Since then a noteworthy group of researchers has used some notions of oppositeness to improve existing optimization and learning algorithms. Among others, evolutionary algorithms, reinforcement agents, and neural networks have been reportedly extended into their opposition-based version to become faster and/or more accurate. However, most works still use a simple notion of opposites, namely linear (or type- I) opposition, that for each x∈[a,b]x\in[a,b] assigns its opposite as x˘I=a+b−x\breve{x}_I=a+b-x. This, of course, is a very naive estimate of the actual or true (non-linear) opposite x˘II\breve{x}_{II}, which has been called type-II opposite in literature. In absence of any knowledge about a function y=f(x)y=f(\mathbf{x}) that we need to approximate, there seems to be no alternative to the naivety of type-I opposition if one intents to utilize oppositional concepts. But the question is if we can receive some level of accuracy increase and time savings by using the naive opposite estimate x˘I\breve{x}_I according to all reports in literature, what would we be able to gain, in terms of even higher accuracies and more reduction in computational complexity, if we would generate and employ true opposites? This work introduces an approach to approximate type-II opposites using evolving fuzzy rules when we first perform opposition mining. We show with multiple examples that learning true opposites is possible when we mine the opposites from the training data to subsequently approximate x˘II=f(x,y)\breve{x}_{II}=f(\mathbf{x},y).Comment: Accepted for publication in The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201

    Seroprevalence of hepatitis B virus and its co-infection with hepatitis D virus and hepatitis C virus in Iranian adult population

    Get PDF
    Context: Hepatitis B virus (HBV) infection is one of the most prevalent public health problems worldwide (especially in developing countries). Aims: This study was carried out to determine the seroprevalence of HBV and its co-infection with hepatitis D (HDV) and C (HCV) viruses in the northeastern part of Iran. Setting and Design: A population-based cross-sectional study in Iran. Materials and Methods: As many as 1,850 subjects were explored for HBsAg. Anti-HDV and anti-HCV antibodies were assessed in HBsAg-positive cases. Statistical Analysis Used: Proportions were compared by Chi-square and Fisher's exact tests. Results: The mean age of subjects was 43.86 ± 11.2 years. The age- and sex-standardized prevalence for HBsAg positivity was 9.7%. It was higher in males than in females (OR: 1.28; 95% CI: 0.9-1.7). The risk of infection in singles was significantly higher than in married cases (OR: 2.13). Eight (5.8%) of HBsAg-positive cases were infected with HDV, and 17 (12.3%) were positive for anti-HCV antibody. Conclusion: This study demonstrates that the prevalence of HBsAg seropositivity in Golestan province of Iran is higher than the levels reported by WHO and previous studies from Iran. It is very important, especially for health providers and policy makers, to recognize the risk factors of HBV infection and its co-infection with HDV and HCV in this area and design effective preventive programs

    Classification and Retrieval of Digital Pathology Scans: A New Dataset

    Full text link
    In this paper, we introduce a new dataset, \textbf{Kimia Path24}, for image classification and retrieval in digital pathology. We use the whole scan images of 24 different tissue textures to generate 1,325 test patches of size 1000×\times1000 (0.5mm×\times0.5mm). Training data can be generated according to preferences of algorithm designer and can range from approximately 27,000 to over 50,000 patches if the preset parameters are adopted. We propose a compound patch-and-scan accuracy measurement that makes achieving high accuracies quite challenging. In addition, we set the benchmarking line by applying LBP, dictionary approach and convolutional neural nets (CNNs) and report their results. The highest accuracy was 41.80\% for CNN.Comment: Accepted for presentation at Workshop for Computer Vision for Microscopy Image Analysis (CVMI 2017) @ CVPR 2017, Honolulu, Hawai

    Ranking Loss and Sequestering Learning for Reducing Image Search Bias in Histopathology

    Full text link
    Recently, deep learning has started to play an essential role in healthcare applications, including image search in digital pathology. Despite the recent progress in computer vision, significant issues remain for image searching in histopathology archives. A well-known problem is AI bias and lack of generalization. A more particular shortcoming of deep models is the ignorance toward search functionality. The former affects every model, the latter only search and matching. Due to the lack of ranking-based learning, researchers must train models based on the classification error and then use the resultant embedding for image search purposes. Moreover, deep models appear to be prone to internal bias even if using a large image repository of various hospitals. This paper proposes two novel ideas to improve image search performance. First, we use a ranking loss function to guide feature extraction toward the matching-oriented nature of the search. By forcing the model to learn the ranking of matched outputs, the representation learning is customized toward image search instead of learning a class label. Second, we introduce the concept of sequestering learning to enhance the generalization of feature extraction. By excluding the images of the input hospital from the matched outputs, i.e., sequestering the input domain, the institutional bias is reduced. The proposed ideas are implemented and validated through the largest public dataset of whole slide images. The experiments demonstrate superior results compare to the-state-of-art.Comment: Under Review for publicatio
    • …
    corecore