1,013 research outputs found

    A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Get PDF
    We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory

    Emission of monoterpenes from European beech (<i>Fagus</i><i> sylvatica</i> L.) as a function of light and temperature

    No full text
    International audienceUsing a dynamic branch enclosure technique European beech (Fagus sylvatica L.) was characterised as a strong emitter of monoterpenes, with sabinene being the predominant compound released. Since monoterpene emission was demonstrated to be a function of light and temperature, application of light and temperature dependent algorithms resulted in reasonable agreement with the measured data. Furthermore, during high temperature periods the depression of net CO2 exchange during midday (midday depression) was accompanied by a depression of monoterpene emission on one occasion. The species dependent standard emission factor and the light and temperature regulated release of monoterpenes is of crucial importance for European VOC emissions. All measurements were performed within the framework of the ECHO project (Emission and CHemical transformation of biogenic volatile Organic compounds) during two intensive field campaigns in the summers of 2002 and 2003

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid

    Porphine Homocoupling on Au(111)

    Get PDF

    Land Grabbing and Human Rights: the Involvement of European Corporate and Financial Entities in Land Grabbing outside the European Union

    Get PDF
    In early research on land grabbing, the initial focus was on foreign companies investing abroad, with a particular focus on those based in countries such as China, Gulf States, South Korea, and India. In recent years, it has become evident that the range of countries land investors originate in is far broader, and includes both North Atlantic - and EU-based actors. In this study, we offer both quantitative and qualitative data illustrating the involvement of EU-based corporate and financial entities in land deals occurring outside of the EU. This study also analyses the global land rush within a human rights framework, examining the implications of particular land deals involving EU-based investors and their impact on communities living in areas where the investments are taking place. The research presented here builds partly on Cotula’s 2014 study on the drivers and human rights implications of land grabbing, but differs in that it focuses explicitly on particular cases of possible, actual or potential human rights abuses and violations, in the context of activities involving European corporate and financial entities. In our conclusions, we offer a series of recommendations on how the EU can more effectively address these issues
    corecore