188 research outputs found
Enzyme-Enzyme Interactions in Monolignol Biosynthesis
The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type–specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of Populus trichocarpa, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed
Heterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies
Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few
conifer cDNA libraries have been sequenced. Because of the high level of sequence
conservation between Pinus and Picea we have investigated the use of arrays from
one genus for studies of gene expression in the other. The partial cDNAs from 384
identifiable genes expressed in differentiating xylem of Pinus taeda were printed on
nylon membranes in randomized replicates. These were hybridized with labelled
cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman
correlation of gene expression for pairs of conifer species was high for needles
(r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83).
The correlation of gene expression for tobacco leaves and needles of each of the three
conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many
partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous
probing was further used to identify tissue-specific gene expression over species
boundaries. To evaluate the significance of differences in gene expression, conventional
parametric tests were compared with permutation tests after four methods of
normalization. Permutation tests after Z-normalization provide the highest degree
of discrimination but may enhance the probability of type I errors. It is concluded
that arrays of cDNA from loblolly pine are useful for studies of gene expression in
other pines or spruces
Author Correction: The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence (Nature Plants, (2022), 8, 5, (500-512), 10.1038/s41477-022-01146-6)
Correction to: Nature Plantshttps://doi.org/10.1038/s41477-022-01146-6, published online 9 May 2022. In the version of the article initially published, Dipak Khadka, who collected the samples in Nepal, was thanked in the Acknowledgements instead of being listed as an author. His name and affiliation (GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal) have been added to the authorship in the HTML and PDF versions of the article
High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome
<p>Abstract</p> <p>Background</p> <p>Benefits from high-throughput sequencing using 454 pyrosequencing technology may be most apparent for species with high societal or economic value but few genomic resources. Rapid means of gene sequence and SNP discovery using this novel sequencing technology provide a set of baseline tools for genome-level research. However, it is questionable how effective the sequencing of large numbers of short reads for species with essentially no prior gene sequence information will support contig assemblies and sequence annotation.</p> <p>Results</p> <p>With the purpose of generating the first broad survey of gene sequences in <it>Eucalyptus grandis</it>, the most widely planted hardwood tree species, we used 454 technology to sequence and assemble 148 Mbp of expressed sequences (EST). EST sequences were generated from a normalized cDNA pool comprised of multiple tissues and genotypes, promoting discovery of homologues to almost half of <it>Arabidopsis</it> genes, and a comprehensive survey of allelic variation in the transcriptome. By aligning the sequencing reads from multiple genotypes we detected 23,742 SNPs, 83% of which were validated in a sample. Genome-wide nucleotide diversity was estimated for 2,392 contigs using a modified theta (θ) parameter, adapted for measuring genetic diversity from polymorphisms detected by randomly sequencing a multi-genotype cDNA pool. Diversity estimates in non-synonymous nucleotides were on average 4x smaller than in synonymous, suggesting purifying selection. Non-synonymous to synonymous substitutions (Ka/Ks) among 2,001 contigs averaged 0.30 and was skewed to the right, further supporting that most genes are under purifying selection. Comparison of these estimates among contigs identified major functional classes of genes under purifying and diversifying selection in agreement with previous researches.</p> <p>Conclusion</p> <p>In providing an abundance of foundational transcript sequences where limited prior genomic information existed, this work created part of the foundation for the annotation of the <it>E. grandis </it>genome that is being sequenced by the US Department of Energy. In addition we demonstrated that SNPs sampled in large-scale with 454 pyrosequencing can be used to detect evolutionary signatures among genes, providing one of the first genome-wide assessments of nucleotide diversity and Ka/Ks for a non-model plant species.</p
- …