3 research outputs found

    The influence of a large build area on the microstructure and mechanical properties of PBF-LB Ti-6Al-4 V alloy

    Get PDF
    This study investigated the print homogeneity of Ti-6Al-4 V alloy parts, when printed over a large build area of 250 × 250 × 170 mm3, using a production scale laser powder bed additive manufacturing system. The effect of part location across this large build area was investigated based on printed part porosity, microstructure, hardness, and tensile properties. In addition, a Hot Isostatic Pressing (HIP) treatment was carried out on the as-built parts, to evaluate its impact on the material properties. A small increase in part porosity from 0.01 to 0.09%, was observed with increasing distance from the argon gas flow inlet, which was located on one side of the build plate, during printing. This effect, which was found to be independent of height from the build plate, is likely to be associated with enhanced levels of condensate or spatter residue, being deposited at distances, further from the gas flow. Despite small differences in porosity, no significant differences were obtained for microstructural features such as prior β grain, α lath thickness, and phase fraction, over the entire build area. Due to this, mechanical performances such as hardness and tensile strengths were also found to be homogenous across the build area. Additionally, it was also observed based on the lattice constants that partial in-situ decomposition of α′→α+β phases occurred during printing. Post HIP treatment result showed a decrease of 7 and 6%, in the yield strength (YS) and ultimate tensile strength (UTS), respectively, which was associated with a coarsening of α lath widths. The potential of the laser powder bed system for large area printing was successfully demonstrated based on the homogenous microstructure and mechanical properties of the Ti-6Al-4 V alloy parts

    Characteristics of friction welded AZ31B magnesium–commercial pure titanium dissimilar joints

    Get PDF
    It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality. This study is aimed at exploring the properties of friction welded magnesium–titanium dissimilar joint using tensile testing coupled with digital image correlation, optical and scanning electron microscopy, x-ray diffraction and microhardness measurements. Microstructurally different regions such as contact zone, dynamic recrystallized zone, thermo-mechanically affected zone, and partially deformed zone in the magnesium side were observed. No discernible regions were observed in the titanium side, as it had not undergone any significant plastic deformation. Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with the titanium. Microhardness mapping showed a steep hardness gradient from the titanium to magnesium side. Critical analysis is done on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped
    corecore