331 research outputs found

    APE Results of Hadron Masses in Full QCD Simulations

    Get PDF
    We present numerical results obtained in full QCD with 2 flavors of Wilson fermions. We discuss the relation between the phase of Polyakov loops and the {\bf sea} quarks boundary conditions. We report preliminary results about the HMC autocorrelation of the hadronic masses, on a 163×3216^3 \times 32 lattice volume, at ÎČ=5.55\beta=5.55 with ksea=0.1570k_{sea}=0.1570.Comment: 3 pages, compressed ps-file (uufiles), Contribution to Lattice 9

    Is there a role for endocannabinoids in sperm–oviduct interaction?

    Get PDF
    The endocannabinoid system (ECS) has been found in reproductive cells and tissues in several mammals. Spermatozoa are able to respond to anandamide, and the oviduct is able to synthesize and modulate the concentration of this endocannabinoid along the isthmic and ampullary regions. The main aim of this study was to understand whether the ECS has a role during sperm storage and release within the oviduct in cattle. Data showed that 1) the endocannabinoid receptors 1 and 2 (CB1 and CB2) are present in bovine spermatozoa both in the initial ejaculate and in spermatozoa bound to the oviduct in vitro; 2) CB1 receptor is still detectable in spermatozoa released from the oviduct through penicillamine but not in those released through heparin; 3) arachidonylethanolamide (AEA) does not affect sperm viability, whereas it depresses sperm progressive motility and kinetic values; 4) sperm–oviduct binding and release in vitro are not influenced by AEA; 5) AEA depresses sperm–zona pellucida (ZP) binding; 6) binding of heparin-capacitated spermatozoa to the ZP is not affected by AEA; 7) N-acylphosphatidylethanolamine-selective phospholipase D, the main enzyme involved in anandamide synthesis, is expressed in oviductal epithelial cells. In conclusion, secretion of AEA from epithelial cells might contribute to the oviduct sperm-reservoir function, prolonging the sperm fertile life through the depression of motility and capacitation. Capacitation signals, such as heparin, that promote sperm release, might remodel the sperm surface and cause a loss of the sperm sensitivity to AEA

    Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection

    Get PDF
    Blood–brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s−1 and 3.49 s−1 compared to AXR estimates of 1.24 s−1 and 0.49 s−1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s−1) compared to before infection (kin = 2.72 ± 0.30 s−1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4

    Assessment of Air Pollution by PM10 and PM2.5 in Nawabshah City, Sindh, Pakistan

    Get PDF
    Increased traffic density due to urbanization is a major cause of air quality deterioration. Atmospheric particulate matter (PM) constitutes one of the most challenging issues in environmental research. This study was designed to assess PM10 and PM2.5 pollution at ten main locations in Nawabshah. Analysis of PM10 and PM2.5 pollution was carried randomly at different selected locations of the city. The highest concentration of PM10 was found at Mohini bazar (MB) and the highest concentration for PM2.5 was found at New Naka (NN). The mean concentration of PM10 was 78.3% higher than world health organization (WHO) standards and 35% than Pakistan’s National Environmental Quality Standards (NEQS). The mean concentration of PM2.5 was 47.3% and 26.3% higher respectively. Mean concentrations of PM2.5 on day-2 and day-10 were found lower than those set by NEQS, while mean concentrations of PM10 on all days exceeded the WHO and NEQS standards indicating that the city was heavily polluted more with PM10 than with PM2.5. Re-suspension of dust particles due to traffic flow, open burning of unmanaged solid waste on the sides of the road and in the street, and improper handling of construction and demolition waste were identified as the main sources for PM pollution in the city. Exposure to higher levels of PM10 and PM2.5 can cause health problems. High levels of PM10 and PM2.5 are a call for the implementation of strict measures to control PM pollution at Nawabshah in order to protect public health and the environment

    Evidence of ΄(1S)→J/ψ+χc1\Upsilon(1S) \to J/\psi+\chi_{c1} and search for double-charmonium production in ΄(1S)\Upsilon(1S) and ΄(2S)\Upsilon(2S) decays

    Full text link
    Using data samples of 102×106102\times10^6 ΄(1S)\Upsilon(1S) and 158×106158\times10^6 ΄(2S)\Upsilon(2S) events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays ΄(1S,2S)→J/ψ(ψâ€Č)+X\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X, where X=ηcX=\eta_c, χcJ(J= 0, 1, 2)\chi_{cJ} (J=~0,~1,~2), ηc(2S)\eta_c(2S), X(3940)X(3940), and X(4160)X(4160). No significant signal is observed in the spectra of the mass recoiling against the reconstructed J/ψJ/\psi or ψâ€Č\psi' except for the evidence of χc1\chi_{c1} production with a significance of 4.6σ4.6\sigma for ΄(1S)→J/ψ+χc1\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}. The measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is (3.90±1.21(stat.)±0.23(syst.))×10−6(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}. The 90%90\% confidence level upper limits on the branching fractions of the other modes having a significance of less than 3σ3\sigma are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include X(4160) signal according to referee's suggestions. Other results unchanged. Paper was accepted for publication as a regular article in Physical Review

    New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria

    Get PDF
    BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.Eur-Intafa

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore