4,129 research outputs found
Entropy Distance: New Quantum Phenomena
We study a curve of Gibbsian families of complex 3x3-matrices and point out
new features, absent in commutative finite-dimensional algebras: a
discontinuous maximum-entropy inference, a discontinuous entropy distance and
non-exposed faces of the mean value set. We analyze these problems from various
aspects including convex geometry, topology and information geometry. This
research is motivated by a theory of info-max principles, where we contribute
by computing first order optimality conditions of the entropy distance.Comment: 34 pages, 5 figure
Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model
A recently developed model that unifies the ballistic and diffusive transport
mechanisms is applied in a theoretical study of carrier transport across
potential barriers at grain boundaries in microcrystalline semiconducting
materials. In the unified model, the conductance depends on the detailed
structure of the band edge profile and in a nonlinear way on the carrier mean
free path. Equilibrium band edge profiles are calculated within the trapping
model for samples made up of a linear chain of identical grains. Quantum
corrections allowing for tunneling are included in the calculation of electron
mobilities. The dependence of the mobilities on carrier mean free path, grain
length, number of grains, and temperature is examined, and appreciable
departures from the results of the thermionic-field-emission model are found.
Specifically, the unified model is applied in an analysis of Hall mobility data
for n-type microcrystalline Si thin films in the range of thermally activated
transport. Owing mainly to the effect of tunneling, potential barrier heights
derived from the data are substantially larger than the activation energies of
the Hall mobilities. The specific features of the unified model, however,
cannot be resolved within the rather large uncertainties of the analysis.Comment: REVTex, 19 pages, 9 figures; to appear in J. Appl. Phy
Optomechanically induced transparency
Coherent interaction of laser radiation with multilevel atoms and molecules
can lead to quantum interference in the electronic excitation pathways. A
prominent example observed in atomic three-level-systems is the phenomenon of
electromagnetically induced transparency (EIT), in which a control laser
induces a narrow spectral transparency window for a weak probe laser beam. The
concomitant rapid variation of the refractive index in this spectral window can
give rise to dramatic reduction of the group velocity of a propagating pulse of
probe light. Dynamic control of EIT via the control laser enables even a
complete stop, that is, storage, of probe light pulses in the atomic medium.
Here, we demonstrate optomechanically induced transparency (OMIT)--formally
equivalent to EIT--in a cavity optomechanical system operating in the resolved
sideband regime. A control laser tuned to the lower motional sideband of the
cavity resonance induces a dipole-like interaction of optical and mechanical
degrees of freedom. Under these conditions, the destructive interference of
excitation pathways for an intracavity probe field gives rise to a window of
transparency when a two-photon resonance condition is met. As a salient feature
of EIT, the power of the control laser determines the width and depth of the
probe transparency window. OMIT could therefore provide a new approach for
delaying, slowing and storing light pulses in long-lived mechanical excitations
of optomechanical systems, whose optical and mechanical properties can be
tailored in almost arbitrary ways in the micro- and nano-optomechanical
platforms developed to date
Discovery of dumbbell-shaped Cs*He_n exciplexes in solid He 4
We have observed several new spectral features in the fluorescence of cesium
atoms implanted in the hcp phase of solid helium following laser excitation to
the 6P states. Based on calculations of the emission spectra using
semiempirical Cs-He pair potentials the newly discovered lines can be assigned
to the decay of specific Cs*He exciplexes: an apple-shaped CsHe and a dumbbell-shaped CsHe exciplex with
a well defined number of bound helium atoms. While the former has been
observed in other enviroments, it was commonly believed that exciplexes with
might not exist. The calculations suggest CsHe to be
the most probable candidate for that exciplex, in which the helium atoms are
arranged on a ring around the waist of the dumbbell shaped electronic density
distribution of the cesium atom.Comment: 4 pages, 4 figure
Multi-photon processes in the Zeeman structure of atomic Cs trapped in solid helium
We report magnetic resonance experiments with optical detection performed on cesium atoms trapped in a crystalline Hematrix. Multi-photon transitions, i.e., processes in which several radio-frequency photons are absorbed simultaneously in a given hyperfine Zeeman multiplet of the ground state, were the central topic of these studies. The long relaxation times of spin coherences of Cs in solid He allow such transitions to be spectrally resolved in fields as low as 1mT. We observed all allowed multi-photon transitions up to the ΔM=8 transition in the F=4 state. We compare the experimental spectra with theoretical spectra obtained from numerical solutions of the Liouville equation that include optical pumping and the interaction with the static and oscillating fields. Multi-photon transitions may find applications in magnetometry, suppress systematic effects in EDM experiments, and allow the study of relaxation phenomena in doped He crystals. The demonstration of these features is still hindered by inhomogeneous line broadenin
Crystal structures and freezing of dipolar fluids
We investigate the crystal structure of classical systems of spherical
particles with an embedded point dipole at T=0. The ferroelectric ground state
energy is calculated using generalizations of the Ewald summation technique.
Due to the reduced symmetry compared to the nonpolar case the crystals are
never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar)
interaction three phases are found upon increasing the dipole moment:
hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even
richer phase diagram arises for dipolar soft spheres with a purely repulsive
inverse power law potential . A crossover between qualitatively
different sequences of phases occurs near the exponent . The results are
applicable to electro- and magnetorheological fluids. In addition to the exact
ground state analysis we study freezing of the Stockmayer fluid by
density-functional theory.Comment: submitted to Phys. Rev.
Generalized Drude model: Unification of ballistic and diffusive electron transport
For electron transport in parallel-plane semiconducting structures, a model
is developed that unifies ballistic and diffusive transport and thus
generalizes the Drude model. The unified model is valid for arbitrary magnitude
of the mean free path and arbitrary shape of the conduction band edge profile.
Universal formulas are obtained for the current-voltage characteristic in the
nondegenerate case and for the zero-bias conductance in the degenerate case,
which describe in a transparent manner the interplay of ballistic and diffusive
transport. The semiclassical approach is adopted, but quantum corrections
allowing for tunneling are included. Examples are considered, in particular the
case of chains of grains in polycrystalline or microcrystalline semiconductors
with grain size comparable to, or smaller than, the mean free path. Substantial
deviations of the results of the unified model from those of the ballistic
thermionic-emission model and of the drift-diffusion model are found. The
formulation of the model is one-dimensional, but it is argued that its results
should not differ substantially from those of a fully three-dimensional
treatment.Comment: 14 pages, 5 figures, REVTEX file, to appear in J. Phys.: Condens.
Matte
Physical Structure of Small Wolf-Rayet Ring Nebulae
We have selected the seven most well-defined WR ring nebulae in the LMC (Br
2, Br 10, Br 13, Br 40a, Br 48, Br 52, and Br 100) to study their physical
nature and evolutionary stages. New CCD imaging and echelle observations have
been obtained for five of these nebulae; previous photographic imaging and
echelle observations are available for the remaining two nebulae. Using the
nebular dynamics and abundances, we find that the Br 13 nebula is a
circumstellar bubble, and that the Br 2 nebula may represent a circumstellar
bubble merging with a fossil main-sequence interstellar bubble. The nebulae
around Br 10, Br 52, and Br 100 all show influence of the ambient interstellar
medium. Their regular expansion patterns suggest that they still contain
significant amounts of circumstellar material. Their nebular abundances would
be extremely interesting, as their central stars are WC5 and WN3-4 stars whose
nebular abundances have not been derived previously. Intriguing and tantalizing
implications are obtained from comparisons of the LMC WR ring nebulae with ring
nebulae around Galactic WR stars, Galactic LBVs, LMC LBVs, and LMC BSGs;
however, these implications may be limited by small-number statistics. A SNR
candidate close to Br 2 is diagnosed by its large expansion velocity and
nonthermal radio emission. There is no indication that Br 2's ring nebula
interacts dynamically with this SNR candidate.Comment: 20 pages, Latex (aaspp4.sty), 2 figures, accepted by the Astronomical
Journal (March 99 issue
- …