16,422 research outputs found
Density-altitude data from 150 rocket flights and 26 searchlight probings, 1947 through 1964
Density and altitude data from rocket flights and searchlight probing
Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems
The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply non- linear content-aware signal processing, which renders their noise scene-dependent. For scene-dependent systems, measuring the NPS with respect to uniform patch signals fails to characterize with accuracy: i) system noise concerning a given input scene, ii) the average system noise power in real-world applications. The scene- and-process-dependent NPS (SPD-NPS) framework addresses these limitations by measuring temporally varying system noise with respect to any given input signal. In this paper, we examine the scene-dependency of simulated camera pipelines in-depth by deriving SPD-NPSs from fifty test scenes. The pipelines apply either linear or non-linear denoising and sharpening, tuned to optimize output image quality at various opacity levels and exposures. Further, we present the integrated area under the mean of SPD-NPS curves over a representative scene set as an objective system noise metric, and their relative standard deviation area (RSDA) as a metric for system noise scene-dependency. We close by discussing how these metrics can also be computed using scene-and-process- dependent Modulation Transfer Functions (SPD-MTF)
Black holes and Hawking radiation in spacetime and its analogues
These notes introduce the fundamentals of black hole geometry, the thermality
of the vacuum, and the Hawking effect, in spacetime and its analogues.
Stimulated emission of Hawking radiation, the trans-Planckian question, short
wavelength dispersion, and white hole radiation in the setting of analogue
models are also discussed. No prior knowledge of differential geometry, general
relativity, or quantum field theory in curved spacetime is assumed.Comment: 31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV
School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al.
(Springer
Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole
An effective black-hole-like horizon occurs, for electromagnetic waves in
matter, at a surface of singular electric and magnetic permeabilities. In a
physical dispersive medium this horizon disappears for wave numbers with
. Nevertheless, it is shown that Hawking radiation is still emitted if
free field modes with are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro
Hawking radiation without black hole entropy
In this Letter I point out that Hawking radiation is a purely kinematic
effect that is generic to Lorentzian geometries. Hawking radiation arises for
any test field on any Lorentzian geometry containing an event horizon
regardless of whether or not the Lorentzian geometry satisfies the dynamical
Einstein equations of general relativity. On the other hand, the classical laws
of black hole mechanics are intrinsically linked to the Einstein equations of
general relativity (or their perturbative extension into either semiclassical
quantum gravity or string-inspired scenarios). In particular, the laws of black
hole thermodynamics, and the identification of the entropy of a black hole with
its area, are inextricably linked with the dynamical equations satisfied by the
Lorentzian geometry: entropy is proportional to area (plus corrections) if and
only if the dynamical equations are the Einstein equations (plus corrections).
It is quite possible to have Hawking radiation occur in physical situations in
which the laws of black hole mechanics do not apply, and in situations in which
the notion of black hole entropy does not even make any sense. This observation
has important implications for any derivation of black hole entropy that seeks
to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
Relativistic Acoustic Geometry
Sound wave propagation in a relativistic perfect fluid with a non-homogeneous
isentropic flow is studied in terms of acoustic geometry. The sound wave
equation turns out to be equivalent to the equation of motion for a massless
scalar field propagating in a curved space-time geometry. The geometry is
described by the acoustic metric tensor that depends locally on the equation of
state and the four-velocity of the fluid. For a relativistic supersonic flow in
curved space-time the ergosphere and acoustic horizon may be defined in a way
analogous the non-relativistic case. A general-relativistic expression for the
acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe
Human factors in design of passenger seats for commercial aircraft: A review
Seat comfort and safety research since the early part of the century is reviewed. The approach blends empirical and theoretical human factors and technical knowledge of seated humans under static and dynamic conditions experienced on commercial aircraft
- …