12 research outputs found
Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam
We report on experimental measurements of the flow behavior of a wet,
two-dimensional foam under conditions of slow, steady shear. The initial
response of the foam is elastic. Above the yield strain, the foam begins to
flow. The flow consists of irregular intervals of elastic stretch followed by
sudden reductions of the stress, i.e. stress drops. We report on the
distribution of the stress drops as a function of the applied shear rate. We
also comment on our results in the context of various two-dimensional models of
foams
Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice
We report on simulations of reversible random sequential adsorption of dimers
on three different lattices: a one-dimensional lattice, a two-dimensional
triangular lattice, and a two-dimensional triangular lattice with the nearest
neighbors excluded. In addition to the adsorption of particles at a rate K+, we
allow particles to leave the surface at a rate K-. The results from the
one-dimensional lattice model agree with previous results for the continuous
parking lot model. In particular, the long-time behavior is dominated by
collective events involving two particles. We were able to directly confirm the
importance of two-particle events in the simple two-dimensional triangular
lattice. For the two-dimensional triangular lattice with the nearest neighbors
excluded, the observed dynamics are consistent with this picture. The
two-dimensional simulations were motivated by measurements of Ca++ binding to
Langmuir monolayers. The two cases were chosen to model the effects of changing
pH in the experimental system.Comment: 9 pages, 10 figure