104 research outputs found

    Healthcare 4.0 digital technologies impact on quality of care: A systematic literature review

    Get PDF
    The healthcare industry is transforming into Healthcare 4.0 (H4.0), an era characterized by smart and connected healthcare systems. This study presents a conceptual framework that classifies H4.0 digital technologies into information and communication technology bundles within the healthcare value chain. It also identifies barriers and evaluates digital technologies’ impact on quality measures through a systematic literature review and meta-analysis approach following the PRISMA protocol. The analysis reveals that digital technologies in the healthcare sector traditionally consist of sensing-communication and processing-actuation technologies. The findings highlight the significant influence of H4.0 digital technologies on three quality measures: patient safety, patient experience/ satisfaction, and clinical effectiveness. While these technologies offer potential benefits, they pose challenges for patients and clinicians, including intellectual property and significance concerns, especially in North America. The proposed framework addresses these issues and enables stakeholders to prioritize, review, and analyze H4.0 digital technologies to enhance patient safety, experience, and clinical effectiveness. This research contributes to the existing literature by being the first comprehensive analysis of the impact of H4.0 technologies on the quality of care. The framework provided in this study offers valuable guidance for stakeholders in selecting appropriate technologies to improve patient outcomes and support the healthcare value chain

    Crystallization and preliminary X-ray analysis of human endothelin

    Full text link

    Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

    Get PDF
    The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. At present, the only feasible strategy to form optical foci inside scattering media is to guide photons by using either implanted or virtual guide stars, which can be inconvenient and limits the potential applications. Here we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By adaptively time-reversing the perturbed component of the scattered light, we show that it is possible to focus light to the origin of the perturbation. Using this approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours, as well as other biomedical uses

    Interaction between Plate Make and Protein in Protein Crystallisation Screening

    Get PDF
    Background: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate

    Larval Connectivity in an Effective Network of Marine Protected Areas

    Get PDF
    Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in Hawai'i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that created prevailing northward currents between sites where parents and offspring were found. These findings empirically demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine populations

    Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    Get PDF
    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks

    Membrane Protein Crystallisation: Current Trends and Future Perspectives

    Full text link
    Alpha helical membrane proteins are the targets for many pharmaceutical drugs and play important roles in physiology and disease processes. In recent years, substantial progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck still remains; the identification of conditions that give crystals that are suitable for structure determination. Over the past 10 years we have been analysing the crystallisation conditions reported for alpha helical membrane proteins with the aim to facilitate a rational approach to the design and implementation of successful crystallisation screens. The result has been the development of MemGold, MemGold2 and the additive screen MemAdvantage. The associated analysis, summarised and updated in this chapter, has revealed a number of surprisingly successfully strategies for crystallisation and detergent selection
    • …
    corecore