23 research outputs found

    Finite size effects with variable range exchange coupling in thin-film Pd/Fe/Pd trilayers

    Full text link
    The magnetic properties of thin-film Pd/Fe/Pd trilayers in which an embedded ~1.5 A-thick ultrathin layer of Fe induces ferromagnetism in the surrounding Pd have been investigated. The thickness of the ferromagnetic trilayer is controlled by varying the thickness of the top Pd layer over a range from 8 A to 56 A. As the thickness of the top Pd layer decreases, or equivalently as the embedded Fe layer moves closer to the top surface, the saturated magnetization normalized to area and the Curie temperature decrease whereas the coercivity increases. These thickness-dependent observations for proximity-polarized thin-film Pd are qualitatively consistent with finite size effects that are well known for regular thin-film ferromagnets. The critical exponent β\beta of the order parameter (magnetization) is found to approach the mean field value of 0.5 as the thickness of the top Pd layer increases. The functional forms for the thickness dependences, which are strongly modified by the nonuniform exchange interaction in the polarized Pd, provide important new insights to understanding nanomagnetism in two-dimensions.Comment: 14 pages, 5 figures, submitted to JMM

    Pulmonary hemodynamic responses to in utero ventilation in very immature fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The onset of ventilation at birth decreases pulmonary vascular resistance (PVR) resulting in a large increase in pulmonary blood flow (PBF). As the large cross sectional area of the pulmonary vascular bed develops late in gestation, we have investigated whether the ventilation-induced increase in PBF is reduced in immature lungs.</p> <p>Methods</p> <p>Surgery was performed in fetal sheep at 105 d GA (n = 7; term ~147 d) to insert an endotracheal tube, which was connected to a neonatal ventilation circuit, and a transonic flow probe was placed around the left pulmonary artery. At 110 d GA, fetuses (n = 7) were ventilated <it>in utero </it>(IUV) for 12 hrs while continuous measurements of PBF were made, fetuses were allowed to develop <it>in utero </it>for a further 7 days following ventilation.</p> <p>Results</p> <p>PBF changes were highly variable between animals, increasing from 12.2 ± 6.6 mL/min to a maximum of 78.1 ± 23.1 mL/min in four fetuses after 10 minutes of ventilation. In the remaining three fetuses, little change in PBF was measured in response to IUV. The increases in PBF measured in responding fetuses were not sustained throughout the ventilation period and by 2 hrs of IUV had returned to pre-IUV control values.</p> <p>Discussion and conclusion</p> <p>Ventilation of very immature fetal sheep <it>in utero </it>increased PBF in 57% of fetuses but this increase was not sustained for more than 2 hrs, despite continuing ventilation. Immature lungs can increase PBF during ventilation, however, the present studies show these changes are transient and highly variable.</p

    Dynamic Simulation of Vehicle Maneuvers for Loads Analysis

    Get PDF
    Presented at AIAA Aviation 2020 ForumTesting critical loads during specific dynamic maneuvers is essential to aircraft structural design, and several such dynamic load cases must be demonstrated during the certification process. A simulation capability is developed in this work to calculate critical loads on the vertical tail of a business jet resulting from yaw maneuvers required for certification. The data produced from these simulations can be used to inform future structural design decisions. Models for the pilot and flight control system are developed to simulate the pilot control actions needed to perform the maneuvers within the boundaries of pilot capabilities and flight control system limits. Aerodynamic and propulsive data are used to calculate the forces and moments on the aircraft and solve the 6-degree of freedom equations of motion to accurately model the aircraft’s trajectory. Sectional aerodynamic characteristics of the horizontal and vertical tail are used to calculate the structural loads at each section of the tail. The summation of these forces and moments yields the loads at the vertical tail root, which can be used to assess the structural design of the tail. The simulation is demonstrated on a T-tail business jet with three weight conditions and at flight conditions throughout the flight test envelope. The ultimate loading conditions and the number of control application cycles required to reach ultimate loads at the vertical tail are determined using the maneuver simulation
    corecore