2 research outputs found

    Structural and spectroscopic investigation of 1-acetyl-2-(4-ethoxy-3-methoxyphenyl) cyclopropane and its NLO activity

    No full text
    To identify promising compounds and to develop a potent non-linear optical material, the molecule 1-acetyl-2-(4-ethoxy-3-methoxyphenyl) cyclopropane (AEMC) was selected. FTIR and FT-Raman spectroscopy techniques were employed to predict the functional groups and vibrational modes of AEMC. Gaussian 09 W software was utilised to analyse the parameters of the optimised title compound. Reactive sites were forecasted using MEP plots. To clarify the chemical significance of the molecule, ELF and LOL are utilised. Furthermore, the presence of interactions within the molecule is confirmed by RDG analysis. The strong and weak hydrogen bonds between the non-bonding atoms of AEMC are studied with the aid of AIM analysis. Additionally, the material's capacity to produce non-linear effects (NLO) was ascertained by examining the linear polarizability and first order hyper polarizability values

    Density functional theory calculations, vibrational spectral analysis and topological analysis of 1-acethyl-2(4-isopropoxy-3-methoxyphenyl) cyclopropane with docking studies

    No full text
    A systematic spectroscopic investigationof 1-acethyl-2(4-isopropoxy-3-methoxyphenyl) cyclopropanewasperformed by utilizing Density functional theory approaches at B3LYP level usingGaussian 09 W software package. The FT-IR and FT-Raman techniques were utilized to assign the spectral properties of the title compound. On the basis of Natural Bond Orbital (NBO) analysis,the transfer of second order perturbation energies and ElectronDensity (ED) from filled lone pairs of Lewis base to unfilled Lewis acid sites wereanalysed. The chemical stability,distribution of energy and energetic behaviour of the compound were calculated from the Highest Occupied and Lowest Unoccupied Molecular Orbital (HOMO-LUMO) Analysis. The nucleophilic and electrophilic locales of the moleculewas perceived by the Molecular electrostatic potential (MEP). NCI investigation gives data around the inter and intra non covalent interlinkages. By using the Multiwavefunction software the topological analysis of ELF and LOL were performed. The chemical reactivity sites were determined by means of the fukui function. The assignments of vibrational spectra were computed using thevibration energy distribution analysis (VEDA). Drug similarityfactors were intended to understand the biological aspects. Vadar software was used to generate the Ramachandran plot. The bioactivity of the title compound was confirmed fromthe molecular docking studies
    corecore