151 research outputs found

    Quantum Cournot equilibrium for the Hotelling-Smithies model of product choice

    Full text link
    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for every location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium.Comment: 13 pages, 6 tables, 8 figure

    Reversibility in the Extended Measurement-based Quantum Computation

    Get PDF
    When applied on some particular quantum entangled states, measurements are universal for quantum computing. In particular, despite the fondamental probabilistic evolution of quantum measurements, any unitary evolution can be simulated by a measurement-based quantum computer (MBQC). We consider the extended version of the MBQC where each measurement can occur not only in the (X,Y)-plane of the Bloch sphere but also in the (X,Z)- and (Y,Z)-planes. The existence of a gflow in the underlying graph of the computation is a necessary and sufficient condition for a certain kind of determinism. We extend the focused gflow (a gflow in a particular normal form) defined for the (X,Y)-plane to the extended case, and we provide necessary and sufficient conditions for the existence of such normal forms

    Experimental realization of Dicke states of up to six qubits for multiparty quantum networking

    Get PDF
    We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by four standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon GHZ and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX

    Time-reversal and super-resolving phase measurements

    Get PDF
    We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to \emph{measure}, as opposed to prepare, entangled states. Our approach is robust, requiring only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase super-resolution with three, four, and six photons using a standard laser and photon counters. Our six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure

    Experimental realization of a quantum game on a one-way quantum computer

    Full text link
    We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a 4-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure

    Demonstration of a simple entangling optical gate and its use in Bell-state analysis

    Get PDF
    We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realisations, using partially-polarising beamsplitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-Z gate in both continuous-wave and pulsed regimes of operation, fully characterising it in each case using quantum process tomography. We also demonstrate a fully-resolving, nondeterministic optical Bell-state analyser based on this controlled-Z gate. This new architecture is ideally suited to guided optics implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures (low res), some other minor changes. Accepted for publication in PR

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi
    corecore