51 research outputs found
Functional consequences of Kir2.1/Kir2.2 subunit heteromerization
Kir2 subunits form channels that underlie classical strongly inwardly rectifying potassium currents. While homomeric Kir2 channels display a number of distinct and physiologically important properties, the functional properties of heteromeric Kir2 assemblies, as well as the stoichiometries and the arrangements of Kir2 subunits in native channels, remain largely unknown. Therefore, we have implemented a concatemeric approach, whereby all four cloned Kir2 subunits were linked in tandem, in order to study the effects of Kir2.1 and Kir2.2 heteromerization on properties of the resulting channels. Kir2.2 subunits contributed stronger to single-channel conductance than Kir2.1 subunits, and channels containing two or more Kir2.2 subunits displayed conductances indistinguishable from that of a Kir2.2 homomeric channel. In contrast, single-channel kinetics was a more discriminating property. The open times were significantly shorter in Kir2.2 channels compared with Kir2.1 channels and decreased nearly proportionally to the number of Kir2.2 subunits in the heteromeric channel. Similarly, the sensitivity to block by barium also depended on the proportions of Kir2.1 to Kir2.2 subunits. Overall, the results showed that Kir2.1 and Kir2.2 subunits exert neither a dominant nor an anomalous effect on any of the properties of heteromeric channels. The data highlight opportunities and challenges of using differential properties of Kir2 channels in deciphering the subunit composition of native inwardly rectifying potassium currents
Roles of the Drosophila SK Channel (dSK) in Courtship Memory
A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended training. These findings highlight important functions for dSK in courtship memory and suggest that SK channels can mediate multiple forms of behavioral plasticity
BAMBI Regulates Angiogenesis and Endothelial Homeostasis through Modulation of Alternative TGFβ Signaling
BACKGROUND: BAMBI is a type I TGFβ receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFβ. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFβ signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFβ stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFβ signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Induction of cholestasis in the perfused rat liver by 2-aminoethyl diphenylborate, an inhibitor of the hepatocyte plasma membrane Ca2+ channels
Journal compilation © 2004 Blackwell Publishing Asia Pty Ltd and Journal of Gastroenterology and Hepatology FoundationBackground and Aims: An increase in the cytoplasmic free Ca2+ concentration in hepatocytes as a result of the release of Ca2+ from intracellular stores and Ca2+ inflow from the extracellular space is a necessary part of the mechanism by which bile acids are moved along the bile cannaliculus by contraction of the cannaliculus. 2-Aminoethyl diphenylborate (2-APB) is a recently discovered inhibitor of store-operated plasma membrane Ca2+ channels in hepatocytes. The aim of the present study was to test the ability of 2-APB to inhibit bile flow.
Methods: Bile flow was measured in the isolated perfused rat liver using cannulation of the common bile duct. Measurements were carried out in the presence or absence of 2-APB in either the presence of taurocholic acid (to enhance basal bile flow) or in the absence of taurocholic acid and in the presence of the hormones vasopressin and glucagon, which are known to stimulate bile flow.
Results: In livers perfused in the presence of taurocholic acid, 2-APB reversibly inhibited bile flow with a slow time of onset. The time of onset of inhibition was reduced by prior addition of the endoplasmic reticulum (Ca2+ + Mg2+)adenosine triphosphatase inhibitor, 2,5-di-t-butylhydroquinone. In livers perfused in the absence of taurocholate, 2-APB had little effect on the basal rate of bile flow, but inhibited the ability of vasopressin and glucagon to stimulate bile flow.
Conclusions: It is concluded that an inhibitor of hepatocyte plasma membrane Ca2+ channels can induce cholestasis. The results provide evidence that suggests that, over a period of time, the normal function of hepatocyte store-operated Ca2+ channels is required to maintain bile flow. Future strategies directed at the regulation of bile flow might include pharmacological or other interventions that modulate Ca2+ inflow to hepatocytesRoland B. Gregory, Rachael Huges and Gregory J Barrit
- …