54 research outputs found

    Characterization of cold sensitivity and thermal preference using an operant orofacial assay

    Get PDF
    BACKGROUND: A hallmark of many orofacial pain disorders is cold sensitivity, but relative to heat-related pain, mechanisms of cold perception and the development of cold allodynia are not clearly understood. Molecular mediators of cold sensation such as TRPM8 have been recently identified and characterized using in vitro studies. In this study we characterized operant behavior with respect to individually presented cold stimuli (24, 10, 2, and -4°C) and in a thermal preference task where rats chose between -4 and 48°C stimulation. We also evaluated the effects of menthol, a TRPM8 agonist, on operant responses to cold stimulation (24, 10, and -4°C). Male and female rats were trained to drink sweetened milk while pressing their shaved faces against a thermode. This presents a conflict paradigm between milk reward and thermal stimulation. RESULTS: We demonstrated that the cold stimulus response function was modest compared to heat. There was a significant effect of temperature on facial (stimulus) contacts, the ratio of licking contacts to stimulus contacts, and the stimulus duration/contact ratio. Males and females differed only in their facial contacts at 10°C. In the preference task, males preferred 48°C to -4°C, despite the fact that 48°C and -4°C were equally painful as based on their reward/stimulus and duration/contact ratios. We were able to induce hypersensitivity to cold using menthol at 10°C, but not at 24 or -4°C. CONCLUSION: Our results indicate a strong role for an affective component in processing of cold stimuli, more so than for heat, which is in concordance with human psychophysical findings. The induction of allodynia with menthol provides a model for cold allodynia. This study provides the basis for future studies involving orofacial pain and analgesics, and is translatable to the human experience

    Effect of pH on sublingual absorption of oxycodone hydrochloride

    No full text
    The purpose of this study was to develop a sublingual spray drug delivery formulation of oxycodone and evaluate the effect of formulation pH on sublingual absorption of oxycodone for acute pain management using rabbit as the animal model. Using a new, sensitive, and specific liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization detector assay, the absorption bioavailability of sublingual oxycodone was determined in rabbits by comparing plasma concentration after sublingual spray delivery with equivalent intravenous dose. The effect of formulation pH on sublingual absorption of oxycodone was also tested on rabbits that had received oxycodone sublingually at a dose of 0.1 mg/0.1 mL (pH 4.0 and 9.0). Blood samples were collected at different time points, and plasma oxycodone concentrations were determined by LC/MS. Following administration of a 0.1 mg dose, the average Cmax values were found to be 64.9±12.1 and 95.2±10.1 ng/mL, for pH 4.0 and 9.0, respectively. The area under the curve (AUC) values were found to be 5807.0, and 8965.3 ng.min/mL for formulation pH 4.0 and 9.0, respectively. The mean sublingual bioavailability of oxycodone was 45.4%±20.1% and 70.1%±17.9%, for pH 4.0 and 9.0, respectively. the formulation pH had no significant influence on oxycodone bioavailability (P<.05). A sublingual spray dosage form of oxycodone hydrochloride would be a good alternative for fast onset pain management, especially in children
    • …
    corecore