23 research outputs found

    DFT investigation of 3d transition metal NMR shielding tensors in diamagnetic systems using the gauge-including projector augmented-wave method

    Get PDF
    We present a density functional theory based method for calculating NMR shielding tensors for 3d transition metal nuclei using periodic boundary conditions. Calculations employ the gauge-including projector augmented-wave pseudopotentials method. The effects of ultrasoft pseudopotential and induced approximations on the second-order magnetic response are intensively examined. The reliability and the strength of the approach for 49Ti and 51V nuclei is shown by comparison with traditional quantum chemical methods, using benchmarks of finite organometallic systems. Application to infinite systems is validated through comparison to experimental data for the 51V nucleus in various vanadium oxide based compounds. The successful agreement obtained for isotropic chemical shifts contrasts with full estimation of the shielding tensor eigenvalues, revealing the limitation of pure exchange-correlation functionals compared to their exact-exchange corrected analogues.Comment: 56 page

    Electrochemical molecular recognition of silver cation by electropolymerised thieno[3 ',4 ': 5,6][1,4]dithiino[2,3-b]quinoxaline: a joint experimental and theoretical study

    No full text
    The novel annelated monomer thieno[3',4':5,6][1,4]dithiino[2,3-b]quinoxaline 1 has been electropolymerised on a variety of electrodes, resulting in films which are electroactive in non-aqueous and aqueous solution. The polymer films exhibit a transformation in voltammetric response corresponding to a positive shift in redox potential in the presence of silver cation, the maximum shift being ca. 150 mV in acetonitrile and ca. 400 epsilon mV in aqueous LiClO4 solution. Mercury dication demonstrates a similar, but smaller (ca. 130 mV) shift in aqueous solution. Theoretical calculations clearly show the potential of poly(1) as a metal complexation agent. The Ag+ ion coordinates with 1 in two ways: (i) an apical conformation involving the two dithiine sulfurs and (ii) a lateral sigma -complex with a contribution from the quinoxaline nitrogens. The Hg2+ ion prefers to coordinate with the sulfur atoms. The calculations performed for the trimer illustrate that the metal ions can be coordinated simultaneously by two repeat units in the polymer chain

    Experimental and theoretical studies into the structural perturbations between neutral, oxidised and reduced forms of 1,4-dithiinoquinoxaline derivatives

    No full text
    The syntheses and electrochemistry of thieno[3',4'∶5,6][1,4]dithiino[2,3-b]quinoxaline (9), 2,3-bis(methylsulfanyl)[1,4]dithiino[2,3-b]quinoxaline (16) and 2,3-ethylenedisulfanyl[1,4]dithiino[2,3-b]quinoxaline (17) are reported, together with the X-ray crystal structures of 9, 16 and the charge-transfer complex 9.TCNQ. In the thieno derivative 9, the molecular structure undergoes a significant change from a boat conformer to a planar system, upon oxidation with TCNQ. Theoretical calculations show that oxidation leads to planarisation of the molecular structure due to the aromatisation of the dithiine moiety. The study of the oxidised/reduced species helps to rationalise the electrochemical behaviour observed experimentally
    corecore