825 research outputs found
Unconventional antiferromagnetic correlations of the doped Haldane gap system YBaNiZnO
We make a new proposal to describe the very low temperature susceptibility of
the doped Haldane gap compound YBaNiZnO. We propose a new
mean field model relevant for this compound. The ground state of this mean
field model is unconventional because antiferromagnetism coexists with random
dimers. We present new susceptibility experiments at very low temperature. We
obtain a Curie-Weiss susceptibility as expected
for antiferromagnetic correlations but we do not obtain a direct signature of
antiferromagnetic long range order. We explain how to obtain the ``impurity''
susceptibility by subtracting the Haldane gap contribution to
the total susceptibility. In the temperature range [1 K, 300 K] the
experimental data are well fitted by . In the temperature range [100 mK, 1 K] the experimental data are
well fitted by , where increases with
. This fit suggests the existence of a finite N\'eel temperature which is
however too small to be probed directly in our experiments. We also obtain a
maximum in the temperature dependence of the ac-susceptibility which
suggests the existence of antiferromagnetic correlations at very low
temperature.Comment: 19 pages, 17 figures, revised version (minor modifications
Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system YCaBaNiO
Magnetization, DC and AC bulk susceptibility of the =1 Haldane chain
system doped with electronic holes, YCaBaNiO
(0x0.20), have been measured and analyzed. The most striking
results are (i) a sub-Curie power law behavior of the linear susceptibility,
, for temperature lower than the Haldane gap
of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic
transition at = 2-3 K. These findings are consistent with (i) random
couplings within the chains between the spin degrees of freedom induced by hole
doping, (ii) the existence of ferromagnetic bonds that induce magnetic
frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Exploiting the Brønsted acidity of phosphinecarboxamides for the synthesis of new phosphides and phosphines
International audienc
- …