825 research outputs found

    Unconventional antiferromagnetic correlations of the doped Haldane gap system Y2_2BaNi1x_{1-x}Znx_xO5_5

    Full text link
    We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2_2BaNi1x_{1-x}Znx_xO5_5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T)C/(Θ+T)\chi(T) \sim C / (\Theta+T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility χimp(T)\chi_{imp}(T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by Tχimp(T)=Cimp(1+Timp/T)γT \chi_{imp}(T) = C_{imp} (1 + T_{imp}/T )^{-\gamma}. In the temperature range [100 mK, 1 K] the experimental data are well fitted by Tχimp(T)=Aln(T/Tc)T \chi_{imp}(T) = A \ln{(T/T_c)}, where TcT_c increases with xx. This fit suggests the existence of a finite N\'eel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility χ(T)\chi'(T) which suggests the existence of antiferromagnetic correlations at very low temperature.Comment: 19 pages, 17 figures, revised version (minor modifications

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2x_{2-x}Cax_xBaNiO5_5 (0\leqx\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)\sim TTα^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
    corecore