8,024 research outputs found
Mean field analysis of quantum phase transitions in a periodic optical superlattice
In this paper we analyze the various phases exhibited by a system of
ultracold bosons in a periodic optical superlattice using the mean field
decoupling approximation. We investigate for a wide range of commensurate and
incommensurate densities. We find the gapless superfluid phase, the gapped Mott
insulator phase, and gapped insulator phases with distinct density wave orders.Comment: 6 pages, 7 figures, 4 table
Preemptive Thread Block Scheduling with Online Structural Runtime Prediction for Concurrent GPGPU Kernels
Recent NVIDIA Graphics Processing Units (GPUs) can execute multiple kernels
concurrently. On these GPUs, the thread block scheduler (TBS) uses the FIFO
policy to schedule their thread blocks. We show that FIFO leaves performance to
chance, resulting in significant loss of performance and fairness. To improve
performance and fairness, we propose use of the preemptive Shortest Remaining
Time First (SRTF) policy instead. Although SRTF requires an estimate of runtime
of GPU kernels, we show that such an estimate of the runtime can be easily
obtained using online profiling and exploiting a simple observation on GPU
kernels' grid structure. Specifically, we propose a novel Structural Runtime
Predictor. Using a simple Staircase model of GPU kernel execution, we show that
the runtime of a kernel can be predicted by profiling only the first few thread
blocks. We evaluate an online predictor based on this model on benchmarks from
ERCBench, and find that it can estimate the actual runtime reasonably well
after the execution of only a single thread block. Next, we design a thread
block scheduler that is both concurrent kernel-aware and uses this predictor.
We implement the SRTF policy and evaluate it on two-program workloads from
ERCBench. SRTF improves STP by 1.18x and ANTT by 2.25x over FIFO. When compared
to MPMax, a state-of-the-art resource allocation policy for concurrent kernels,
SRTF improves STP by 1.16x and ANTT by 1.3x. To improve fairness, we also
propose SRTF/Adaptive which controls resource usage of concurrently executing
kernels to maximize fairness. SRTF/Adaptive improves STP by 1.12x, ANTT by
2.23x and Fairness by 2.95x compared to FIFO. Overall, our implementation of
SRTF achieves system throughput to within 12.64% of Shortest Job First (SJF, an
oracle optimal scheduling policy), bridging 49% of the gap between FIFO and
SJF.Comment: 14 pages, full pre-review version of PACT 2014 poste
Is scale-up worth it? Challenges in economic analysis of diagnostic tests for tuberculosis.
David Dowdy and colleagues discuss the complexities of costing new TB diagnostic tests, including GeneXpert, and argue that flexible analytic tools are needed for decision-makers to adapt large-sample cost-effectiveness data to local conditions
Zero Temperature Insulator-Metal Transition in Doped Manganites
We study the transition at T=0 from a ferromagnetic insulating to a
ferromagnetic metallic phase in manganites as a function of hole doping using
an effective low-energy model Hamiltonian proposed by us recently. The model
incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly
coupled to orbitally degenerate electrons as well as strong Coulomb correlation
effects and leads naturally to the coexistence of localized (JT polaronic) and
band-like electronic states. We study the insulator-metal transition as a
function of doping as well as of the correlation strength U and JT gain in
energy E_{JT}, and find, for realistic values of parameters, a ground state
phase diagram in agreement with experiments. We also discuss how several other
features of manganites as well as differences in behaviour among manganites can
be understood in terms of our model.Comment: To be published in Europhysics Letter
- …