8,804 research outputs found

    Automated Classification of 2000 Bright IRAS Sources

    Full text link
    An Artificial Neural Network (ANN) has been employed using a supervised back-propagation scheme to classify 2000 bright sources from the Calgary database of IRAS (Infrared Astronomy Satellite) spectra in the wavelength region of 8-23 microns. The data base has been classified into 17 pre-determined classes based on spectral morphology. We have been able to classify more than 80 percent of the 2000 sources correctly at the first instance. The speed and robustness of the scheme will allow us to classify the whole of LRS database, containing more than 50,000 sources in the future.Comment: 26 pages, To appear in ApJS after July 200

    The Submillimeter Array

    Full text link
    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.Comment: 10 pages, 4 figure

    Pluri-Canonical Models of Supersymmetric Curves

    Full text link
    This paper is about pluri-canonical models of supersymmetric (susy) curves. Susy curves are generalisations of Riemann surfaces in the realm of super geometry. Their moduli space is a key object in supersymmetric string theory. We study the pluri-canonical models of a susy curve, and we make some considerations about Hilbert schemes and moduli spaces of susy curves.Comment: To appear in the proceedings of the intensive period "Perspectives in Lie Algebras", held at the CRM Ennio De Giorgi, Pisa, Italy, 201

    Class II ADP-ribosylation factors are required for efficient secretion of Dengue viruses

    Get PDF
    This article is available open access through the publisher’s website.Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.Research Fund for Control of Infectious Diseases of Hong Kong and BNP Paribas Corporate and Investment Banking

    Spray freeze dried large porous particles for nano drug delivery by inhalation

    Get PDF
    INTRODUCTION: Tuberculosis (TB) is a bacterial infection caused by Mycobaterium tuberculosis. TB has recently reemerged as a disease of interest for improved drug delivery, with a focus on leveraging the benefits of anti-tubercular drug nanoparticle formulation (1, 2). Drug nanoparticles can target infected cells and provide a large payload, but the optimal administration route remains uncertain (3). While oral formulations are most preferred, the passage of nanoparticles across the gastrointesintal tract is challenging. On the other hand, intravenous injection of nanosuspen
postprin

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio Ξ\theta, then for any 0<Ï”<1/20<\epsilon<1/2, it finds a set Sâ€ČS' of volume at most 2k1+Ï”2k^{1+\epsilon} and bipartiteness ratio at most 4Ξ/Ï”4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(Ï”2ξ−2k1+Ï”ln⁥3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field H∄c\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter Îș\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas Îș\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Massive expanding torus and fast outflow in planetary nebula NGC 6302

    Full text link
    We present interferometric observations of 12^{12}CO and 13^{13}CO JJ=2−-1 emission from the butterfly-shaped, young planetary nebula NGC 6302. The high angular resolution and high sensitivity achieved in our observations allow us to resolve the nebula into two distinct kinematic components: (1) a massive expanding torus seen almost edge-on and oriented in the North-South direction, roughly perpendicular to the optical nebula axis. The torus exhibits very complex and fragmentated structure; (2) high velocity molecular knots moving at high velocity, higher than 20 \kms, and located in the optical bipolar lobes. These knots show a linear position-velocity gradient (Hubble-like flow), which is characteristic of fast molecular outflow in young planetary nebulae. From the low but variable 12^{12}CO/13^{13}CO JJ=2−-1 line intensity ratio we conclude that the 12^{12}CO JJ=2−-1 emission is optically thick over much of the nebula. Using the optically thinner line 13^{13}CO JJ=2−-1 we estimate a total molecular gas mass of ∌\sim 0.1 M⊙_\odot, comparable to the ionized gas mass; the total gas mass of the NGC 6302 nebula, including the massive ionized gas from photon dominated region, is found to be ∌\sim 0.5 M⊙_\odot. From radiative transfer modelling we infer that the torus is seen at inclination angle of 75∘^\circ with respect to the plane of the sky and expanding at velocity of 15 \kms. Comparison with recent observations of molecular gas in NGC 6302 is also discussed.Comment: 24 pages, 7 figures, accepted for publication in Astrophysical Journa
    • 

    corecore