4,866 research outputs found
A Simple Passive Scalar Advection-Diffusion Model
This paper presents a simple, one-dimensional model of a randomly advected
passive scalar. The model exhibits anomalous inertial range scaling for the
structure functions constructed from scalar differences. The model provides a
simple computational test for recent ideas regarding closure and scaling for
randomly advected passive scalars. Results suggest that high order structure
function scaling depends on the largest velocity eddy size, and hence scaling
exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure
Dynamics of Scalar Fields in the Background of Rotating Black Holes
A numerical study of the evolution of a massless scalar field in the
background of rotating black holes is presented. First, solutions to the wave
equation are obtained for slowly rotating black holes. In this approximation,
the background geometry is treated as a perturbed Schwarzschild spacetime with
the angular momentum per unit mass playing the role of a perturbative
parameter. To first order in the angular momentum of the black hole, the scalar
wave equation yields two coupled one-dimensional evolution equations for a
function representing the scalar field in the Schwarzschild background and a
second field that accounts for the rotation. Solutions to the wave equation are
also obtained for rapidly rotating black holes. In this case, the wave equation
does not admit complete separation of variables and yields a two-dimensional
evolution equation. The study shows that, for rotating black holes, the late
time dynamics of a massless scalar field exhibit the same power-law behavior as
in the case of a Schwarzschild background independently of the angular momentum
of the black hole.Comment: 14 pages, RevTex, 6 Figure
Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes
The dynamics of relativistic stars and black holes are often studied in terms
of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with
different effective potentials . In this paper we present a systematic
study of the relation between the structure of the QNM's of the KG equation and
the form of . In particular, we determine the requirements on in
order for the QNM's to form complete sets, and discuss in what sense they form
complete sets. Among other implications, this study opens up the possibility of
using QNM expansions to analyse the behavior of waves in relativistic systems,
even for systems whose QNM's do {\it not} form a complete set. For such
systems, we show that a complete set of QNM's can often be obtained by
introducing an infinitesimal change in the effective potential
High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy
Time-domain THz transmission experiment was performed on a film deposited on sapphire substrate. Temperatures between 300
and 923 K were investigated and complex permittivity spectra of the film were
determined. The lowest frequency optic phonon near 28 cm reveals a slow
monotonic decrease in frequency on heating with no significant anomaly near the
phase transitions. We show that the dielectric anomaly near the ferroelectric
phase transition can be explained by slowing down of a relaxational mode,
observed in the THz spectra. A second harmonic generation signal observed in a
single crystal confirms a loss of center of symmetry in the ferroelectric phase
and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte
Quasi-Normal Mode Expansion for Linearized Waves in Gravitational Systems
The quasinormal modes (QNM's) of gravitational systems modeled by the
Klein-Gordon equation with effective potentials are studied in analogy to the
QNM's of optical cavities. Conditions are given for the QNM's to form a
complete set, i.e., for the Green's function to be expressible as a sum over
QNM's, answering a conjecture by Price and Husain [Phys. Rev. Lett. {\bf 68},
1973 (1992)]. In the cases where the QNM sum is divergent, procedures for
regularization are given. The crucial condition for completeness is the
existence of spatial discontinuities in the system, e.g., the discontinuity at
the stellar surface in the model of Price and Husain.Comment: 12 pages, WUGRAV-94-
Pressure-induced polarization reversal in multiferroic
The low-temperature ferroelectric polarization of multiferroic is
completely reversed at a critical pressure of 10 kbar and the phase transition
from the incommensurate to the commensurate magnetic phase is induced by
pressures above 14 kbar. The high-pressure data correlate with thermal
expansion measurements indicating a significant lattice strain at the
low-temperature transition into the incommensurate phase. The results support
the exchange striction model for the ferroelectricity in multiferroic
compounds and they show the importance of magnetic frustration as
well as the spin-lattice coupling
Wave Propagation in Gravitational Systems: Late Time Behavior
It is well-known that the dominant late time behavior of waves propagating on
a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have
also been studied. This paper presents a systematic treatment of the tail
phenomenon for a broad class of models via a Green's function formalism and
establishes the following. (i) The tail is governed by a cut of the frequency
Green's function along the ~Im~ axis,
generalizing the Schwarzschild result. (ii) The dependence of the cut
is determined by the asymptotic but not the local structure of space. In
particular it is independent of the presence of a horizon, and has the same
form for the case of a star as well. (iii) Depending on the spatial
asymptotics, the late time decay is not necessarily a power law in time. The
Schwarzschild case with a power-law tail is exceptional among the class of the
potentials having a logarithmic spatial dependence. (iv) Both the amplitude and
the time dependence of the tail for a broad class of models are obtained
analytically. (v) The analytical results are in perfect agreement with
numerical calculations
Perturbative Approach to the Quasinormal Modes of Dirty Black Holes
Using a recently developed perturbation theory for uasinormal modes (QNM's),
we evaluate the shifts in the real and imaginary parts of the QNM frequencies
due to a quasi-static perturbation of the black hole spacetime. We show the
perturbed QNM spectrum of a black hole can have interesting features using a
simple model based on the scalar wave equation.Comment: Published in PR
Dispersion Interactions between Optically Anisotropic Cylinders at all Separations: Retardation Effects for Insulating and Semiconducting Single Wall Carbon Nanotubes
We derive the complete form of the van der Waals dispersion interaction
between two infinitely long anisotropic semiconducting/insulating thin
cylinders at all separations. The derivation is based on the general theory of
dispersion interactions between anisotropic media as formulated in [J. N.
Munday, D. Iannuzzi, Yu. S. Barash and F. Capasso, {\sl Phys. Rev. A} {\bf 71},
042102 (2005)]. This formulation is then used to calculate the dispersion
interactions between a pair of single walled carbon nanotubes at all
separations and all angles. Non-retarded and retarded forms of the interactions
are developed separately. The possibility of repulsive dispersion interactions
and non-monotonic dispersion interactions is discussed within the framework of
the new formulation
Exactly solvable path integral for open cavities in terms of quasinormal modes
We evaluate the finite-temperature Euclidean phase-space path integral for
the generating functional of a scalar field inside a leaky cavity. Provided the
source is confined to the cavity, one can first of all integrate out the fields
on the outside to obtain an effective action for the cavity alone.
Subsequently, one uses an expansion of the cavity field in terms of its
quasinormal modes (QNMs)-the exact, exponentially damped eigenstates of the
classical evolution operator, which previously have been shown to be complete
for a large class of models. Dissipation causes the effective cavity action to
be nondiagonal in the QNM basis. The inversion of this action matrix inherent
in the Gaussian path integral to obtain the generating functional is therefore
nontrivial, but can be accomplished by invoking a novel QNM sum rule. The
results are consistent with those obtained previously using canonical
quantization.Comment: REVTeX, 26 pages, submitted to Phys. Rev.
- …