2,301 research outputs found
Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs
Pebble games are single-player games on DAGs involving placing and moving
pebbles on nodes of the graph according to a certain set of rules. The goal is
to pebble a set of target nodes using a minimum number of pebbles. In this
paper, we present a possibly simpler proof of the result in [CLNV15] and
strengthen the result to show that it is PSPACE-hard to determine the minimum
number of pebbles to an additive term for all , which improves upon the currently known additive constant hardness of
approximation [CLNV15] in the standard pebble game. We also introduce a family
of explicit, constant indegree graphs with nodes where there exists a graph
in the family such that using constant pebbles requires moves
to pebble in both the standard and black-white pebble games. This independently
answers an open question summarized in [Nor15] of whether a family of DAGs
exists that meets the upper bound of moves using constant pebbles
with a different construction than that presented in [AdRNV17].Comment: Preliminary version in WADS 201
General Connectivity Distribution Functions for Growing Networks with Preferential Attachment of Fractional Power
We study the general connectivity distribution functions for growing networks
with preferential attachment of fractional power, ,
using the Simon's method. We first show that the heart of the previously known
methods of the rate equations for the connectivity distribution functions is
nothing but the Simon's method for word problem. Secondly, we show that the
case of fractional the -transformation of the rate equation
provides a fractional differential equation of new type, which coincides with
that for PA with linear power, when . We show that to solve such a
fractional differential equation we need define a transidental function
that we call {\it upsilon function}. Most of all
previously known results are obtained consistently in the frame work of a
unified theory.Comment: 10 page
Projeto de um gerador de atraso digital de cinco canais ajustável via microcontrolador.
Entrada padronizada: VILLAS-BOAS, P. R
The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's
We define the topological entropy per unit volume in parabolic PDE's such as
the complex Ginzburg-Landau equation, and show that it exists, and is bounded
by the upper Hausdorff dimension times the maximal expansion rate. We then give
a constructive implementation of a bound on the inertial range of such
equations. Using this bound, we are able to propose a finite sampling algorithm
which allows (in principle) to measure this entropy from experimental data.Comment: 26 pages, 1 small figur
Absence of reflection as a function of the coupling constant
We consider solutions of the one-dimensional equation where is locally integrable, is integrable with supp, and
is a coupling constant. Given a family of solutions
which satisfy for all , we prove that the zeros of , the Wronskian of and , form a discrete set
unless . Setting , one sees that a particular
consequence of this result may be stated as: if the fixed energy scattering
experiment gives rise to a reflection coefficient
which vanishes on a set of couplings with an accumulation point, then .Comment: To appear in Journal of Mathematical Physic
- …