21,526 research outputs found

    Enforcement of regulation, informal labor and firm performance

    Get PDF
    This paper investigates how enforcement of labor regulation affects the firm’s use of informal labor and firm performance. Using firm level data on informal employment and firm performance, and administrative data on enforcement of regulation at the city level, we show that in areas where law enforcement is stricter firms employ a smaller amount of informal employment. Furthermore, by reducing the firm’s access to unregulated labor, stricter enforcement is also associated with lower labor productivity. We control for different regional and firm characteristics, and we instrument enforcement with a measure of the access of labor inspectors to firms. Taken together, our findings suggest that increased access to labor flexibility significantly improves firm performance

    Some Implications of the Cosmological Constant to Fundamental Physics

    Get PDF
    In the presence of a cosmological constant, ordinary Poincare' special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincare' and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale.Comment: 15 pages, lecture presented at the "XIIth Brazilian School of Cosmology and Gravitation", Mangaratiba, Rio de Janeiro, September 10-23, 200

    Cosmological Term and Fundamental Physics

    Full text link
    A nonvanishing cosmological term in Einstein's equations implies a nonvanishing spacetime curvature even in absence of any kind of matter. It would, in consequence, affect many of the underlying kinematic tenets of physical theory. The usual commutative spacetime translations of the Poincare' group would be replaced by the mixed conformal translations of the de Sitter group, leading to obvious alterations in elementary concepts such as time, energy and momentum. Although negligible at small scales, such modifications may come to have important consequences both in the large and for the inflationary picture of the early Universe. A qualitative discussion is presented which suggests deep changes in Hamiltonian, Quantum and Statistical Mechanics. In the primeval universe as described by the standard cosmological model, in particular, the equations of state of the matter sources could be quite different from those usually introduced.Comment: RevTeX, 4 pages. Selected for Honorable Mention in the Annual Essay Competition of the Gravity Research Foundation for the year 200

    Living bacteria rheology: population growth, aggregation patterns and cooperative behaviour under different shear flows

    Full text link
    The activity of growing living bacteria was investigated using real-time and in situ rheology -- in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus -- strain COL and its isogenic cell wall autolysis mutant -- were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the two strains follow different and rich behaviours, with no counterpart in the optical density or in the population's colony forming units measurements. While the viscosity of strain COL keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain decreases steeply, still in the exponential phase, remains constant for some time and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviours, which were observed to be shear stress dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL, obtained with oscillatory shear, exhibit power-law behaviours whose exponent are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant have complex behaviours, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. These behaviours reflect nevertheless the bacteria growth stage.Comment: 9 pages, 10 figure
    • …
    corecore