2 research outputs found

    Energy Spectrum and Exact Cover in an Extended Quantum Ising Model

    Full text link
    We investigate an extended version of the quantum Ising model which includes beyond-nearest neighbour interactions and an additional site-dependent longitudinal magnetic field. Treating the interaction exactly and using perturbation theory in the longitudinal field, we calculate the energy spectrum and find that the presence of beyond-nearest-neighbour interactions enhances the minimal gap between the ground state and the first excited state, irrespective of the nature of decay of these interactions along the chain. The longitudinal field adds a correction to this gap that is independent of the number of qubits. We discuss the application of our model to implementing specific instances of 3-satisfiability problems (Exact Cover) and make a connection to a chain of flux qubits.Comment: 9 pages, 3 figures, published versio

    A hands-on activity to introduce the structure of NV-center quantum bits in diamond

    No full text
    For the start of a secondary school level lesson series on quantum computing, we designed a hands-on modeling activity where students construct a model diamond lattice with a nitrogen vacancy (NV) defect. NV centers find application as qubits and sensitive magnetometers. This activity aims to help students visualize the structure of such NV centers within the diamond lattice, making the subject matter more tangible. The activity has proven to be challenging but feasible. It features both collaborative and competitive elements thereby surely creating an energizing buzz in the classroom.Science & Engineering EducationScience Education and Communicatio
    corecore