1,116 research outputs found
Heavy quark medium polarization at next-to-leading order
We compute the imaginary part of the heavy quark contribution to the photon
polarization tensor, i.e. the quarkonium spectral function in the vector
channel, at next-to-leading order in thermal QCD. Matching our result, which is
valid sufficiently far away from the two-quark threshold, with a previously
determined resummed expression, which is valid close to the threshold, we
obtain a phenomenological estimate for the spectral function valid for all
non-zero energies. In particular, the new expression allows to fix the overall
normalization of the previous resummed one. Our result may be helpful for
lattice reconstructions of the spectral function (near the continuum limit),
which necessitate its high energy behaviour as input, and can in principle also
be compared with the dilepton production rate measured in heavy ion collision
experiments. In an appendix analogous results are given for the scalar channel.Comment: 43 pages. v2: a figure and other clarifications added, published
versio
One-variable word equations in linear time
In this paper we consider word equations with one variable (and arbitrary
many appearances of it). A recent technique of recompression, which is
applicable to general word equations, is shown to be suitable also in this
case. While in general case it is non-deterministic, it determinises in case of
one variable and the obtained running time is O(n + #_X log n), where #_X is
the number of appearances of the variable in the equation. This matches the
previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a
couple of heuristics as well as more detailed time analysis the running time is
lowered to O(n) in RAM model. Unfortunately no new properties of solutions are
shown.Comment: submitted to a journal, general overhaul over the previous versio
Sterile neutrinos in cosmology and how to find them in the lab
A number of observed phenomena in high energy physics and cosmology lack
their resolution within the Standard Model of particle physics. These puzzles
include neutrino oscillations, baryon asymmetry of the universe and existence
of dark matter. We discuss the suggestion that all these problems can be solved
by new physics which exists only below the electroweak scale. The dedicated
experiments that can confirm or rule out this possibility are discussed.Comment: Invited talk at XXIII Int. Conf. on Neutrino Physics and
Astrophysics, May 25-31, Christchurch, New Zealan
Meson screening masses from lattice QCD with two light and the strange quark
We present results for screening masses of mesons built from light and
strange quarks in the temperature range of approximately between 140 MeV to 800
MeV. The lattice computations were performed with 2+1 dynamical light and
strange flavors of improved (p4) staggered fermions along a line of constant
physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The
lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq
4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass
remains almost equal to the corresponding zero temperature pseudo-scalar (pole)
mass. At temperatures around 3Tc (Tc being the transition temperature) the
continuum extrapolated pseudo-scalar screening mass approaches very close to
the free continuum result of 2 \pi T from below. On the other hand, at high
temperatures the vector screening mass turns out to be larger than the free
continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses
do not become degenerate even for a temperature as high as 4Tc. Using these
mesonic spatial correlation functions we have also investigated the restoration
of chiral symmetry and the effective restoration of the axial symmetry. We have
found that the vector and the axial-vector screening correlators become
degenerate, indicating chiral symmetry restoration, at a temperature which is
consistent with the QCD transition temperature obtained in previous studies. On
the other hand, the pseudo-scalar and the scalar screening correlators become
degenerate only at temperatures larger than 1.3Tc, indicating that the
effective restoration of the axial symmetry takes place at a temperature larger
than the QCD transition temperature.Comment: Published versio
Dimensional Reduction, Hard Thermal Loops and the Renormalization Group
We study the realization of dimensional reduction and the validity of the
hard thermal loop expansion for lambda phi^4 theory at finite temperature,
using an environmentally friendly finite-temperature renormalization group with
a fiducial temperature as flow parameter. The one-loop renormalization group
allows for a consistent description of the system at low and high temperatures,
and in particular of the phase transition. The main results are that
dimensional reduction applies, apart from a range of temperatures around the
phase transition, at high temperatures (compared to the zero temperature mass)
only for sufficiently small coupling constants, while the HTL expansion is
valid below (and rather far from) the phase transition, and, again, at high
temperatures only in the case of sufficiently small coupling constants. We
emphasize that close to the critical temperature, physics is completely
dominated by thermal fluctuations that are not resummed in the hard thermal
loop approach and where universal quantities are independent of the parameters
of the fundamental four-dimensional theory.Comment: 20 pages, 13 eps figures, uses epsfig and pstrick
Corpora in Text-Based Russian Studies
This chapter focuses on textual data that are collected for a specific purpose, which are usually referred to as corpora. Scholars use corpora when they examine existing instances of a certain phenomenon or to conduct systematic quantitative analyses of occurrences, which in turn reflect habits, attitudes, opinions, or trends. For these contexts, it is extremely useful to combine different approaches. For example, a linguist might analyze the frequency of a certain buzzword, whereas a scholar in the political, cultural, or sociological sciences might attempt to explain the change in language usage from the data in question.Peer reviewe
Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop
We compute the simplest hard thermal loops for a spatial 't Hooft loop in the
deconfined phase of a SU(N) gauge theory. We expand to quadratic order about a
constant background field A_0 = Q/g, where Q is a diagonal, color matrix and g
is the gauge coupling constant. We analyze the problem in sufficient generality
that the techniques developed can be applied to compute transport properties in
a "semi"-Quark Gluon Plasma. Notably, computations are done using the double
line notation at finite N. The quark self-energy is a Q-dependent thermal mass
squared, of order g^2T^2, where T is the temperature, times the same hard
thermal loop as at Q=0. The gluon self-energy involves two pieces: a
Q-dependent Debye mass squared, of order g^2T^2, times the same hard thermal
loop as for Q=0, plus a new hard thermal loop, of order g^2T^3, due to the
color electric field generated by a spatial 't Hooft loop.Comment: 52 pages, 10 figures; Eqs. (118), (137), and (158) have been
corrected. We thank H. Nishimura and V. V. Skokov for pointing this ou
Cosmological Constraints on an Invisibly Decaying Higgs Boson
Working in the context of a proposal for collisional dark matter, we derive
bounds on the Higgs boson coupling to a stable light scalar
particle, which we refer to as phion (), required to solve problems with
small scale structure formation which arise in collisionless dark matter
models. We discuss the behaviour of the phion in the early universe for
different ranges of its mass. We find that a phion in the mass range of 100 MeV
is excluded and that a phion in the mass range of 1 GeV requires a large
coupling constant, g^{\prime} \gsim 2, and m_h \lsim 130 GeV in order to
avoid overabundance, in which case the invisible decay mode of the Higgs boson
would be dominant.Comment: 5 pages, 2 figures, Revtex style, changed conten
EVAPORATION OF QUARK DROPS DURING THE COSMOLOGICAL Q-H TRANSITION
We have carried out a study of the hydrodynamics of disconnected quark
regions during the final stages of the cosmological quark-hadron transition. A
set of relativistic Lagrangian equations is presented for following the
evaporation of a single quark drop and results from the numerical solution of
this are discussed. A self-similar solution is shown to exist and the formation
of baryon number density inhomogeneities at the end of the drop contraction is
discussed.Comment: 12 pages Phys. Rev. format, uuencoded postscript file including 12
figure
Temperament, character and serotonin activity in the human brain: A positron emission tomography study based on a general population cohort
BackgroundThe psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension âharm avoidanceâ (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT) density in vivo with positron emission tomography (PET) in healthy individuals with high or low HA scores using an âoversamplingâ study design.MethodSubjects consistently in either upper or lower quartiles for the HA trait were selected from a population-based cohort in Finland (n = 2075) with pre-existing Temperament and Character Inventory (TCI) scores. A total of 22 subjects free of psychiatric and somatic disorders were included in the matched high- and low-HA groups. The main outcome measure was regional 5-HTT binding potential (BPND) in high- and low-HA groups estimated with PET and [11C]N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine ([11C]MADAM). In secondary analyses, 5-HTT BPND was correlated with other TCI dimensions.Results5-HTT BPND did not differ between high- and low-HA groups in the midbrain or any other brain region. This result remained the same even after adjusting for other relevant TCI dimensions. Higher 5-HTT BPND in the raphe nucleus predicted higher scores in âself-directednessâ.ConclusionsThis study does not support an association between the temperament dimension HA and serotonin transporter density in healthy subjects. However, we found a link between high serotonin transporter density and high âself-directednessâ (ability to adapt and control one's behaviour to fit situations in accord with chosen goals and values). We suggest that biological factors are more important in explaining variability in character than previously thought.</jats:sec
- âŠ