2,224 research outputs found

    Robust and Fast 3D Scan Alignment using Mutual Information

    Full text link
    This paper presents a mutual information (MI) based algorithm for the estimation of full 6-degree-of-freedom (DOF) rigid body transformation between two overlapping point clouds. We first divide the scene into a 3D voxel grid and define simple to compute features for each voxel in the scan. The two scans that need to be aligned are considered as a collection of these features and the MI between these voxelized features is maximized to obtain the correct alignment of scans. We have implemented our method with various simple point cloud features (such as number of points in voxel, variance of z-height in voxel) and compared the performance of the proposed method with existing point-to-point and point-to- distribution registration methods. We show that our approach has an efficient and fast parallel implementation on GPU, and evaluate the robustness and speed of the proposed algorithm on two real-world datasets which have variety of dynamic scenes from different environments

    Draft Auctions

    Full text link
    We introduce draft auctions, which is a sequential auction format where at each iteration players bid for the right to buy items at a fixed price. We show that draft auctions offer an exponential improvement in social welfare at equilibrium over sequential item auctions where predetermined items are auctioned at each time step. Specifically, we show that for any subadditive valuation the social welfare at equilibrium is an O(log2(m))O(\log^2(m))-approximation to the optimal social welfare, where mm is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Bayes-Nash equilibria and for no-regret learning outcomes, via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations, extend with a small degradation, to subadditive valuations, the largest complement-free class of valuations. Variants of draft auctions have been used in practice and have been experimentally shown to outperform other auctions. Our results provide a theoretical justification

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure
    corecore